

DyREM: Dynamically Mitigating Quantum Readout Error with Embedded Accelerator

Kaiwen Zhou¹, Liqiang Lu¹*, Hanyu Zhang¹, Debin Xiang¹, Chenning Tao¹, Xinkui Zhao¹, Size Zheng², Jianwei Yin¹

¹Zhejiang university, ²ByteDance Ltd

Kaiwen Zhou

First-year Ph.D. student in CS, Zhejiang University

Research interests:

Quantum Computer Architecture

Quantum Error Correction

Advisor: Prof. Liqiang Lu

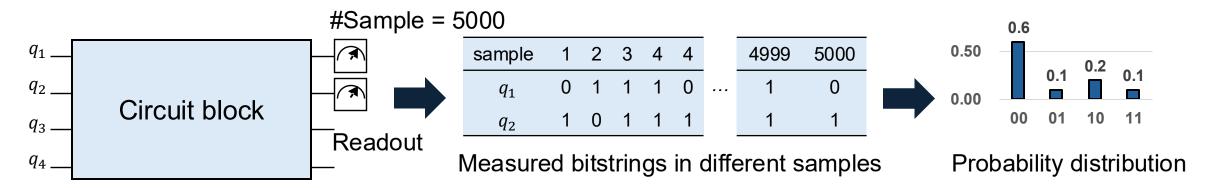
Homepage: https://liqianglu-zju.github.io/

Outline of Presentation

- Background
- Motivation
- DyREM Dataflow
- Architecture Design
- Evaluation

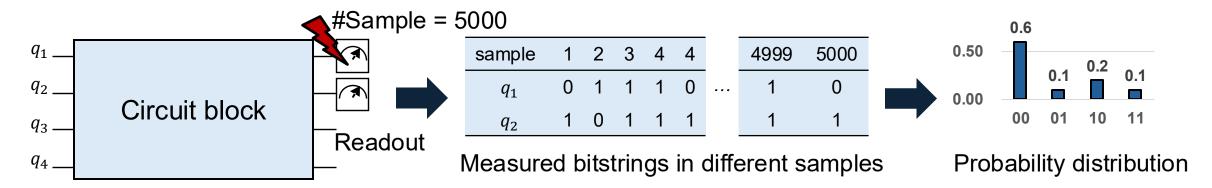
Quantum Readout

Quantum readout reads the information from quantum bits to classical bits.



Quantum Readout

Quantum readout reads the information from quantum bits to classical bits.



However, the quantum readout process suffers from readout error.

Readout Error

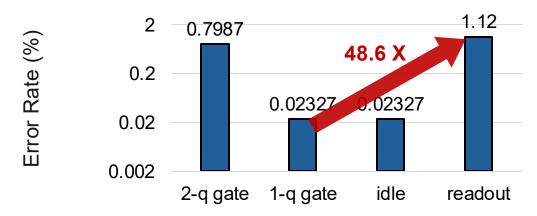
■ Error sources

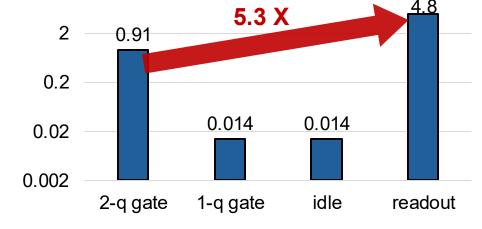
Long readout latency

Crosstalk

Imperfect discriminator

Readout error is significant on current quantum hardware.





Noise on 10-qubit Tianmu quantum device

Readout Error

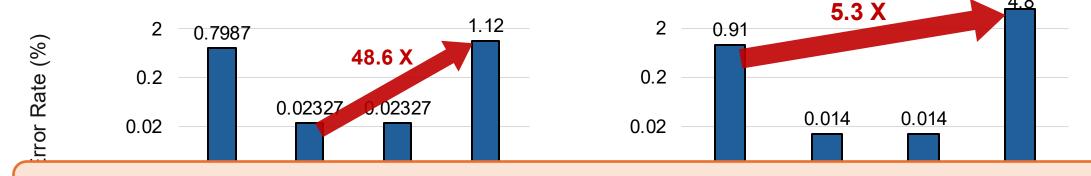
■ Error sources

Long readout latency

Crosstalk

Imperfect discriminator

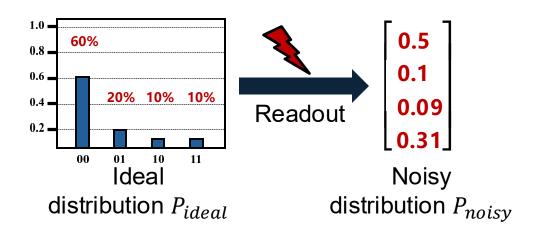
■ Readout error is **significant on current quantum hardware**.



It is essential to mitigate readout errors to obtain reliable results.

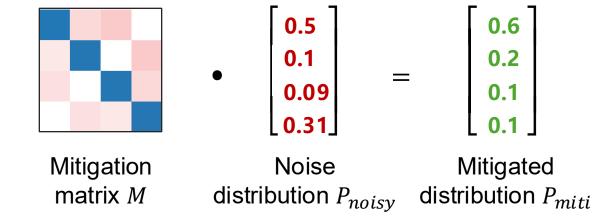
Matrix-Based Readout Mitigation

Readout with Noise



$$P_{noisy} = N \cdot P_{ideal}$$

Perform Matrix-Vector Multiplication



$$P_{miti} = M \cdot P_{noisy}$$

Matrix-Based Readout Mitigation

3 Steps to Obtain Mitigation Matrix M

 Prepares qubits to different basis states and apply measurement.



② Fill the noisy matrix

$$N = \begin{bmatrix} 0.6 & 0.1 & 0.2 & 0.1 \\ 0 & 0.7 & 0.2 & 0.1 \\ 0.2 & 0.2 & 0.6 & 0 \\ 0 & 0.1 & 0.1 & 0.8 \end{bmatrix}$$

③ Inverse the noisy matrix

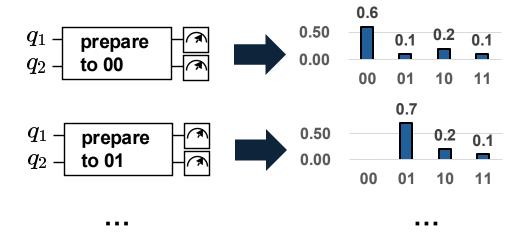
$$M = N^{-1} =$$

Mitigation matrix

Matrix-Based Readout Mitigation

3 Steps to Obtain Mitigation Matrix M

Prepares qubits to different basis states and apply measurement.

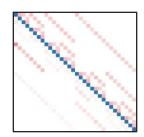


Fill the noisy matrix

$$N = \begin{bmatrix} 0.6 & 0.1 & 0.2 & 0.1 \\ 0 & 0.7 & 0.2 & 0.1 \\ 0.2 & 0.2 & 0.6 & 0 \\ 0 & 0.1 & 0.1 & 0.8 \end{bmatrix}$$

$$M = N^{-1} =$$

Mitigation matrix



5-qubit mitigation matrix: $2^5 \times 2^5$ 10-qubit mitigation matrix: 2¹⁰ × 2¹⁰

The size exponentially increases!

Tensor-Product-Based Readout Mitigation

Key Idea: Tensor-Product Approximation

$$P_{miti} = M \cdot P_{noisy}$$

$$P_{miti} = (M_1 \otimes M_2 \otimes \cdots \otimes M_k) \cdot P_{noisy}$$

sub-mitigation matrices

Each submatrix shows exponential reduction in size.

Tensor-Product-Based Readout Mitigation

Key Idea: Tensor-Product Approximation

$$P_{miti} = M \cdot P_{noisy}$$

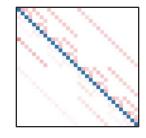
$$P_{miti} = (M_1 \otimes M_2 \otimes \cdots \otimes M_k) \cdot P_{noisy}$$

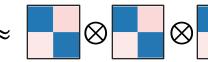
sub-mitigation matrices

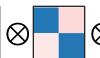
Each submatrix shows exponential reduction in size.

Qubit Group and Sub-Mitigation Matrix

IBM Mthree [1] and Google IBU [2].







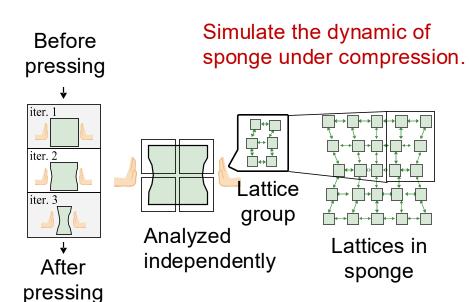
Each physical qubit corresponds to a 2x2 meta matrix.

Good scalability, low fidelity (crosstalk-unaware).

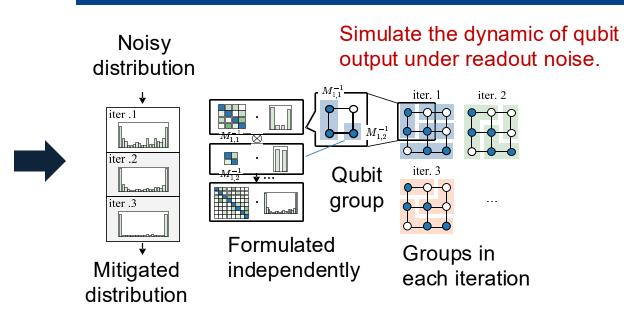
Our Prior Work on Readout Mitigation

■ QuFEM (ASPLOS 2024)

Classical Finite Element Method



Quantum Finite Element Method

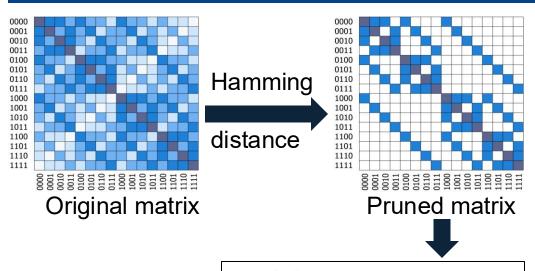


A divide-and-conquer strategy to mitigate the noisy distribution.

Our Prior Work on Readout Mitigation

■ SpREM (DAC 2024)

Pruning based on Hamming Distance

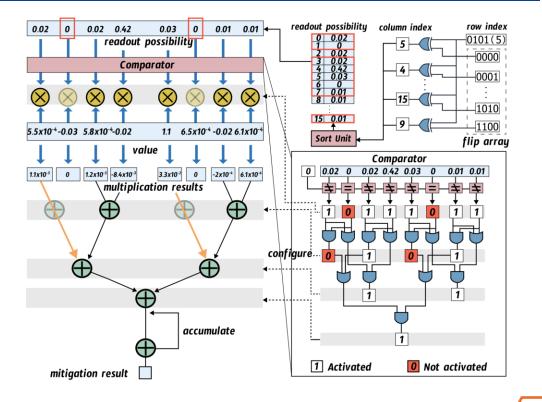


HD: 1

qubit num: n=4

HDSR format

Hardware Architecture



Outline of Presentation

- Background
- Motivation
- DyREM Dataflow
- Architecture Design
- Evaluation

Challenge 1: Long Latency

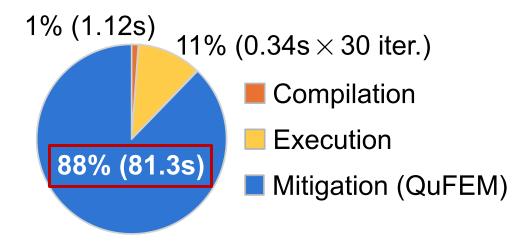
Breakdown of End-to-End Latency

■ 16-qubit QAOA

Iteration: 30 times

■ 3 stages:

- Compilation, Execution, Mitigation
- Platforms:
- Quantum: 156-qubit IBM_fez processor
- Classical: AMD EPYC 9554 64-core CPU

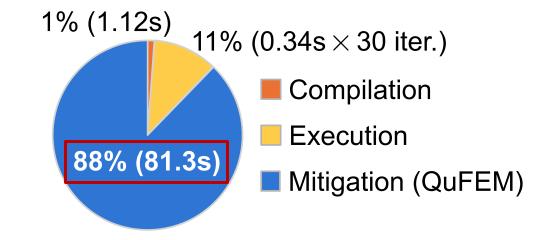


Classical-side mitigation dominates the runtime!

Challenge 1: Long Latency

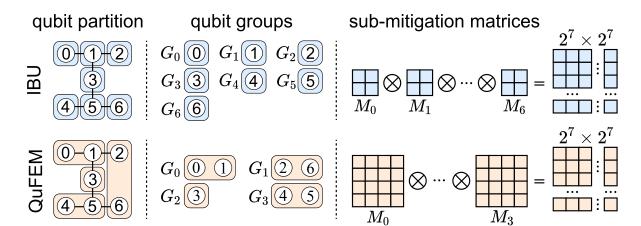
Breakdown of End-to-End Latency

- 16-qubit QAOA
- Iteration: 30 times
- 3 stages:
- Compilation, Execution, Mitigation
- Platforms:
- Quantum: 156-qubit IBM_fez processor

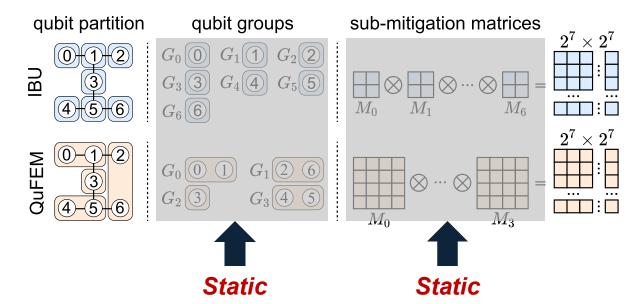


Goal: Reduce the mitigation time with a dedicated accelerator.

Qubit Groups of Prior Works



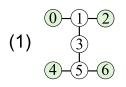
Qubit Groups of Prior Works

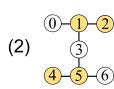


Qubit Groups of Prior Works

Dynamically Changing Measured Qubits

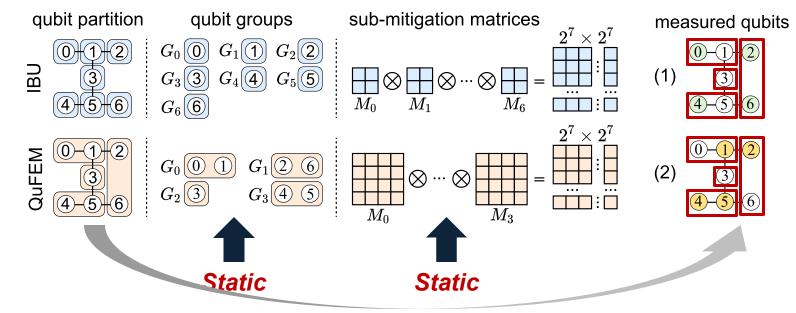
measured qubits





Qubit Groups of Prior Works

Dynamically Changing Measured Qubits

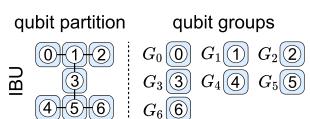


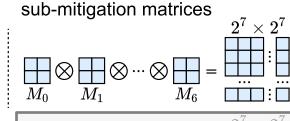
Apply the grouping scheme of QuFEM (state-of-the-art)

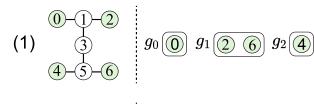
Qubit Groups of Prior Works

Dynamically Changing Measured Qubits

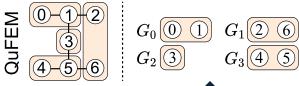
qubit groups

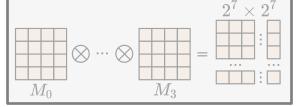


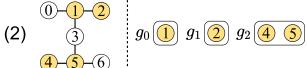




measured qubits

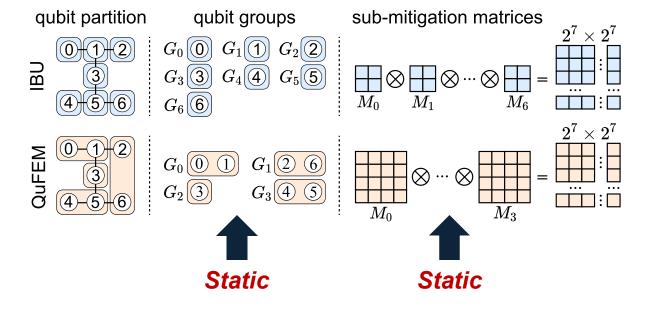




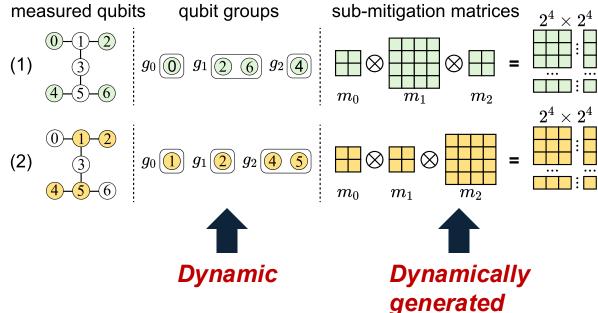


Pre-determined matrices can not be reused (2)

Qubit Groups of Prior Works

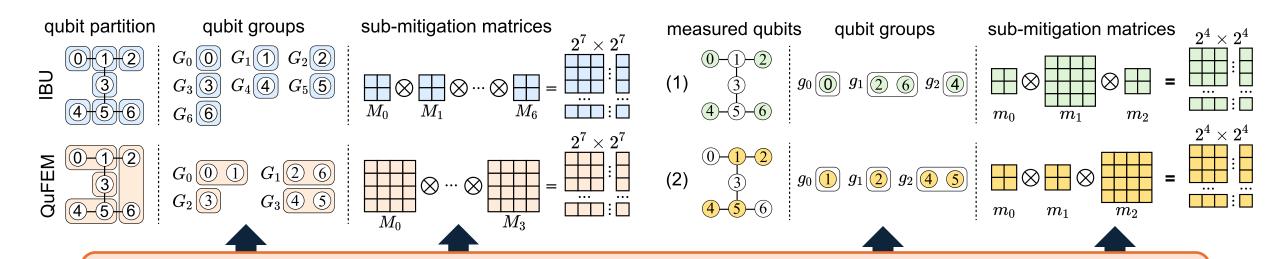


Dynamically Changing Measured Qubits



Qubit Groups of Prior Works

Dynamically Changing Measured Qubits

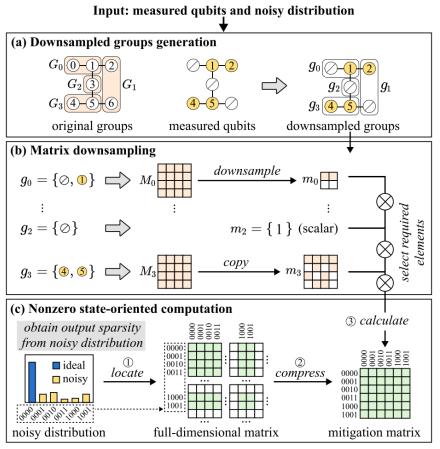


Goal: Enable the dynamic readout error mitigation.

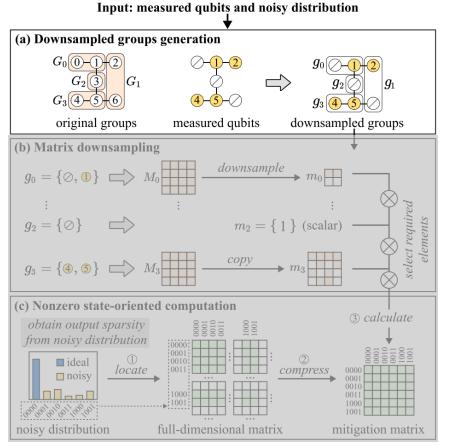
Outline of Presentation

- Background
- Motivation
- DyREM Dataflow
- Architecture Design
- Evaluation

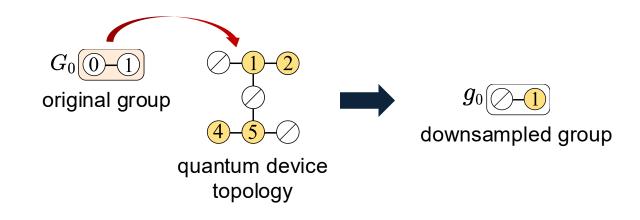
DyREM Dataflow Overview

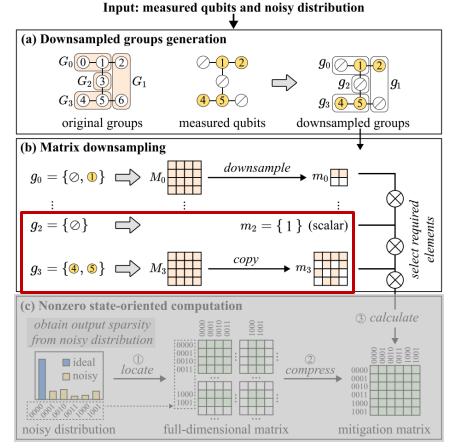


Downsampled Groups Generation



- We define the concept of **downsampled group** g_i , determined by the original groups G_i and measured qubits.
- Unmeasured physical qubits are denoted by Ø



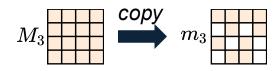


- We categorize downsampled groups into three types:
- Unmeasured (e.g., g_2)
- Fully measured (e.g., g_3)
- Partially measured (e.g., g_0 and g_1)

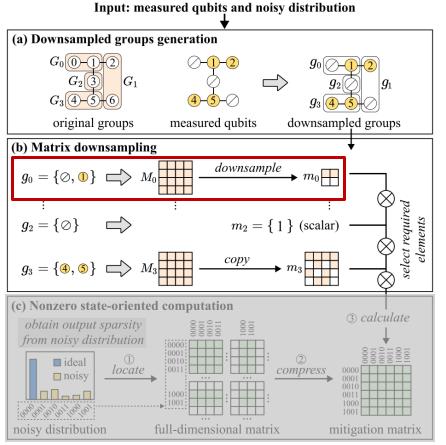
Unmeasured

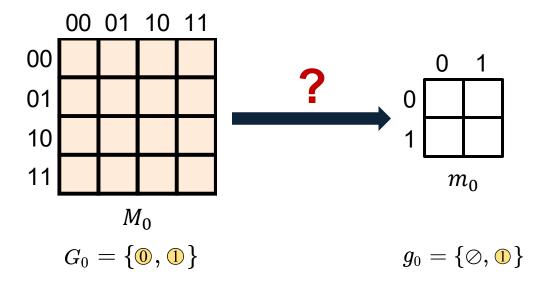
$$m_2 = \{1\} (scalar)$$

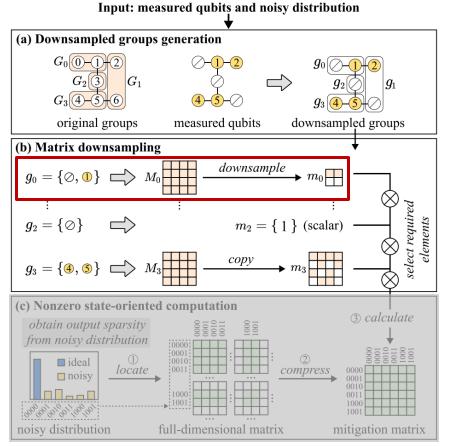
Fully Measured

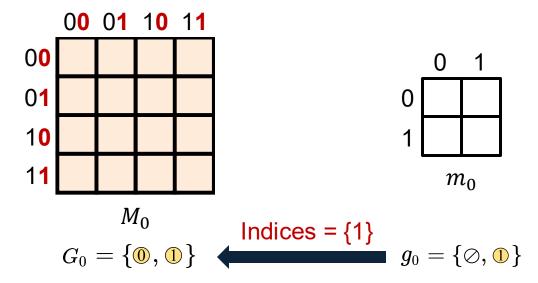


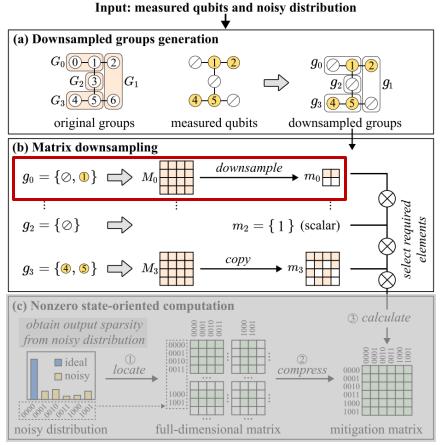
☐ does not involve the subsequent calculation of the mitigation matrix

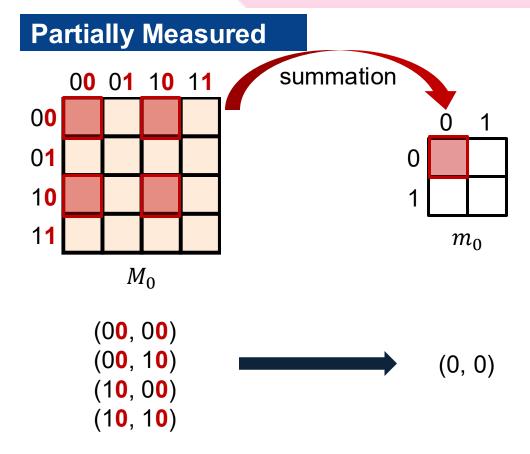


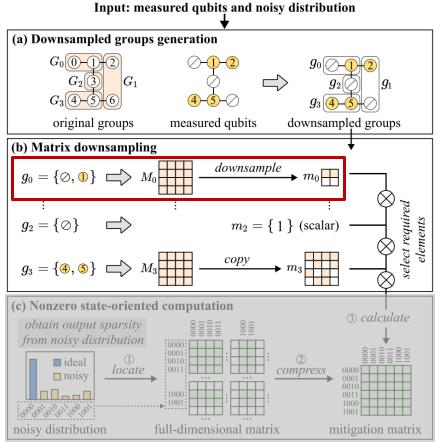


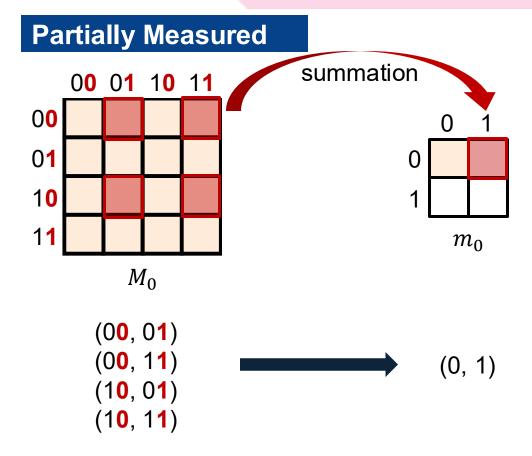


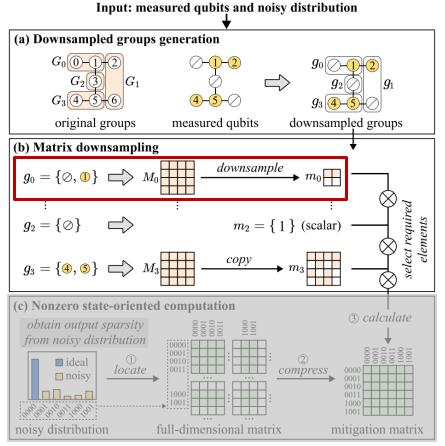


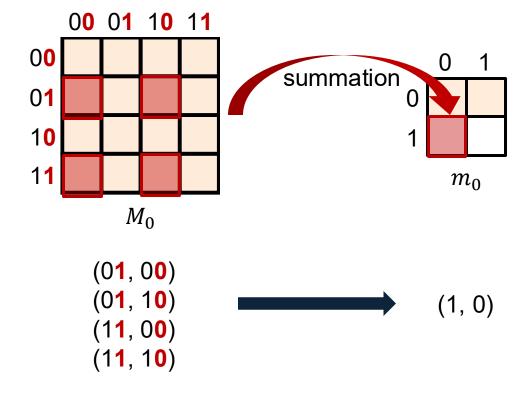


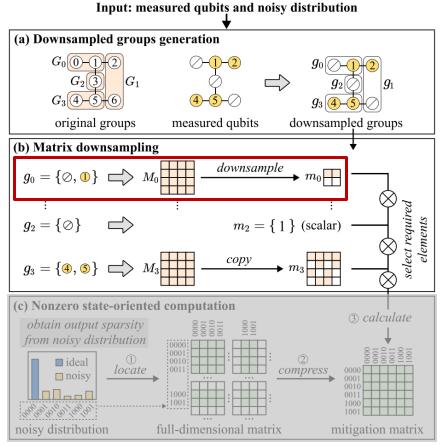


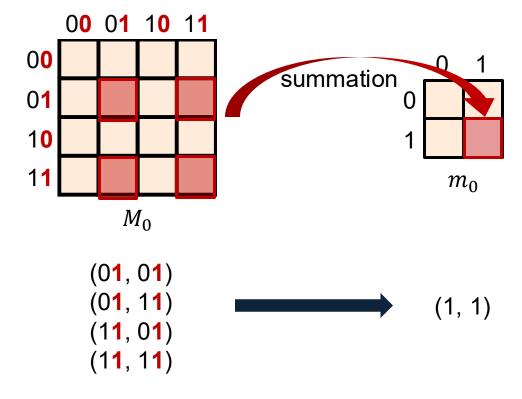


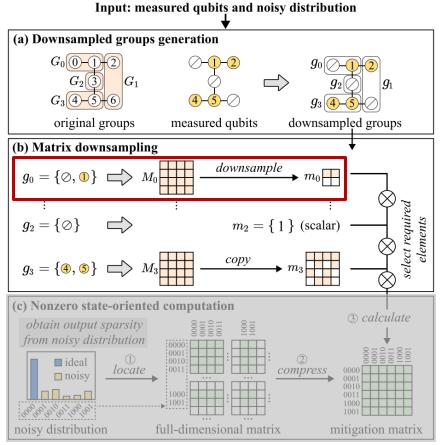


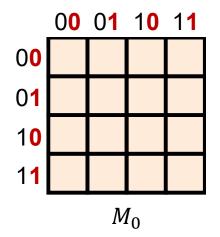


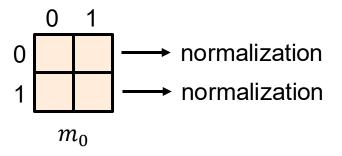


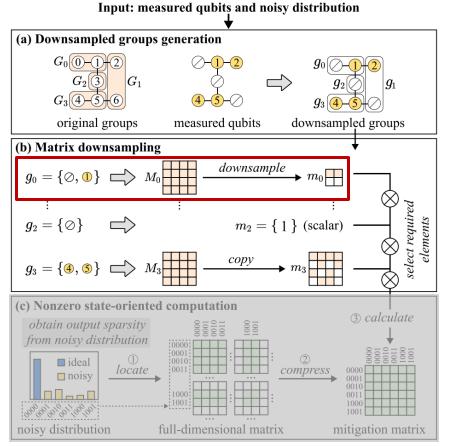




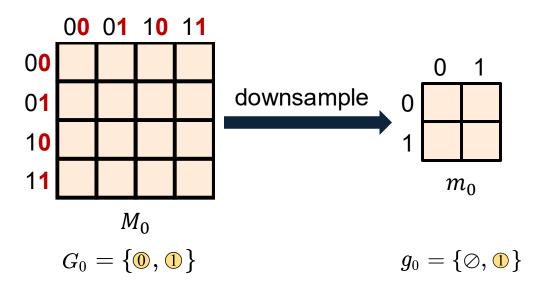




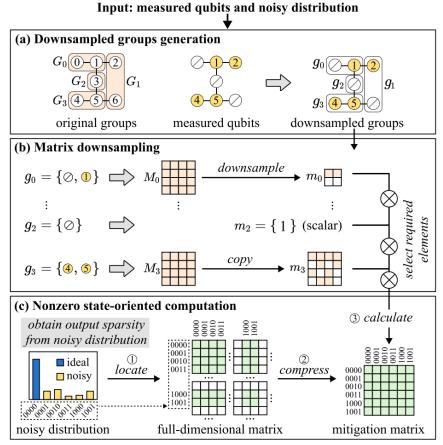


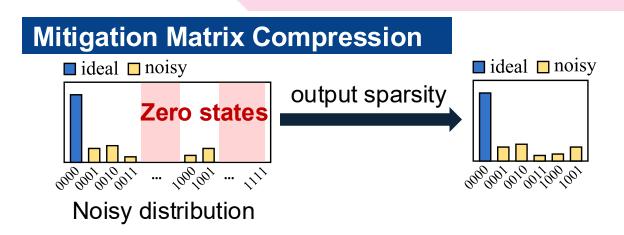


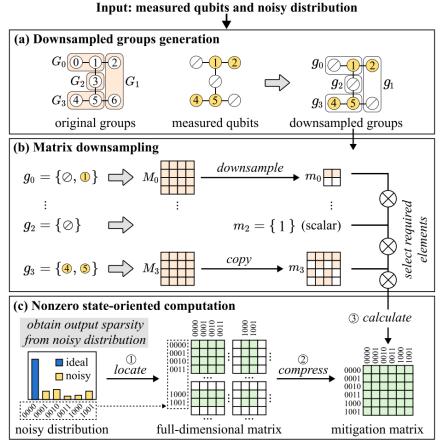
Partially Measured

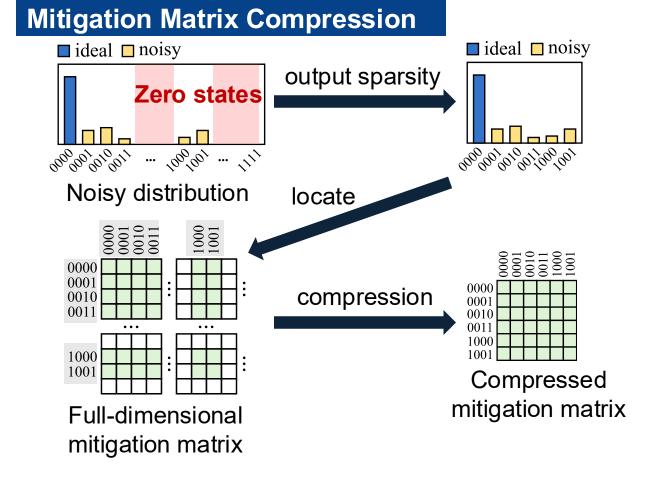


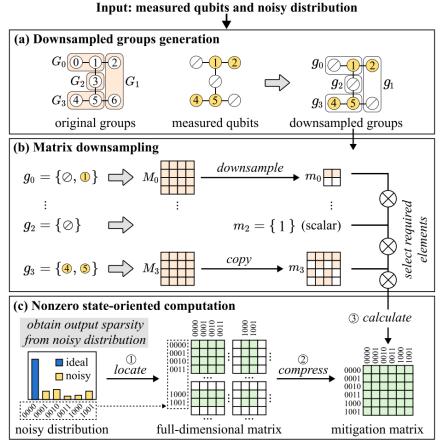
Downsampling is essentially a convolution process. We can compute the kernel size and values based on g_i .





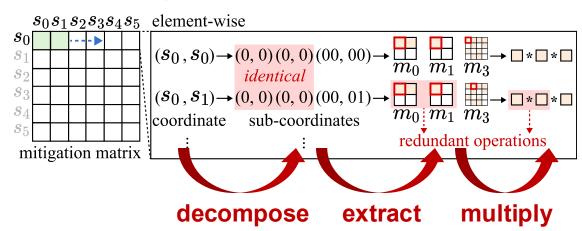


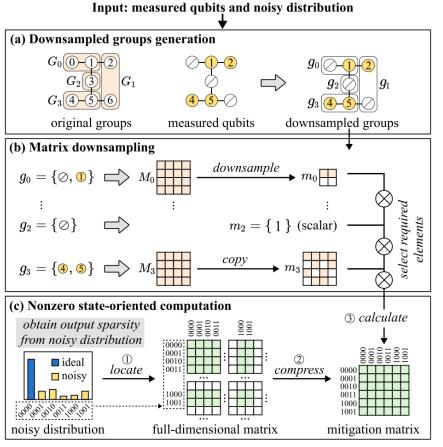




Nonzero State Similarity Detection

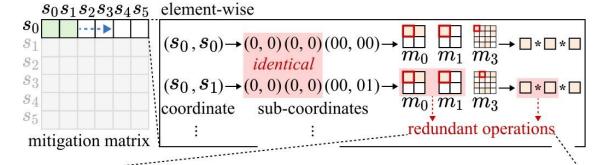
 $\text{Define: } \psi_{noisy} = \{|0000\rangle, |0001\rangle, |0010\rangle, |0011\rangle, |1000\rangle, |1001\rangle\}$

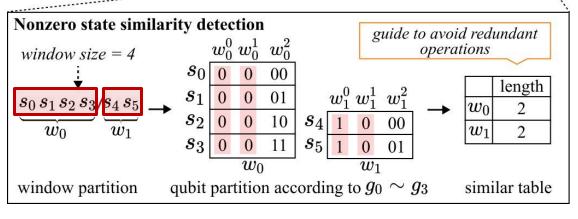




Nonzero State Similarity Detection

 $\text{Define: } \psi_{noisy} = \{|0000\rangle, |0001\rangle, |0010\rangle, |0011\rangle, |1000\rangle, |10011\rangle\}$



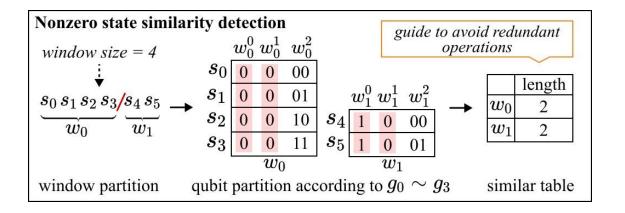


Outline of Presentation

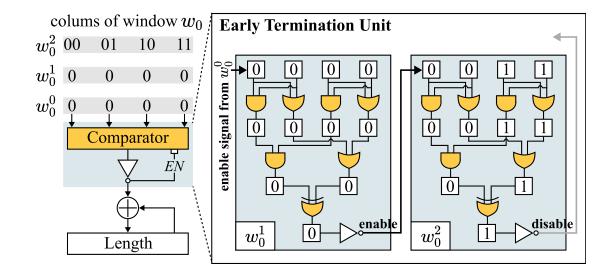
- Background
- Motivation
- DyREM Dataflow
- Architecture Design
- Evaluation

Nonzero State Detector

Software Side

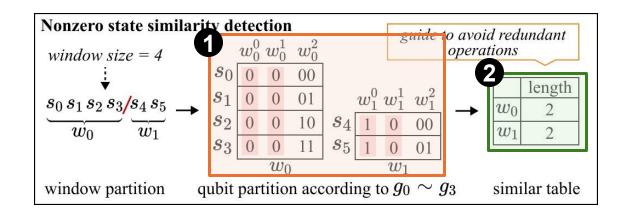


Hardware Side

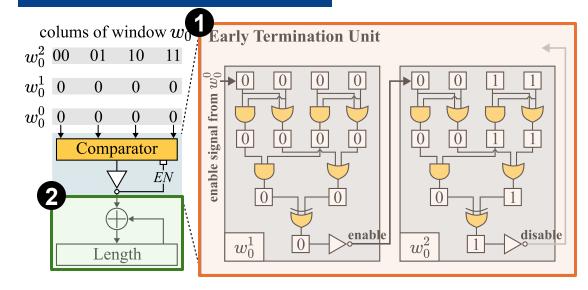


Nonzero State Detector

Software Side



Hardware Side

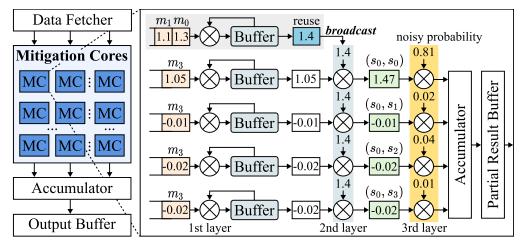


- 1 Detection of identical columns in each window
- 2 Computation of the similar table

Mitigation Core

Software Side

Hardware Side

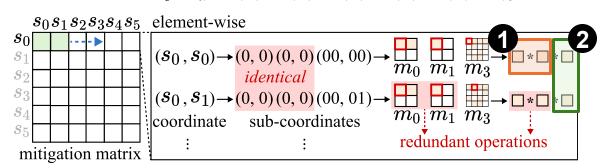


Details of Mitigation Core

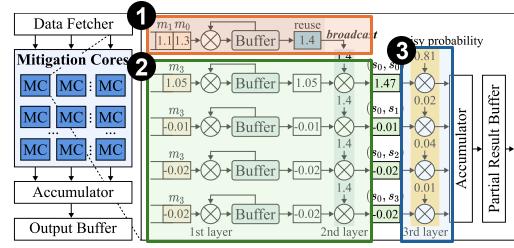
Mitigation Core

Software Side

 $\text{Define: } \psi_{noisy} = \{|0000\rangle, |0001\rangle, |0010\rangle, |0011\rangle, |1000\rangle, |1001\rangle\}$



Hardware Side



- 1 The computation of reuse data
- 2 Element-wise multiplication
- 3 Matrix-vector multiplication

Details of Mitigation Core

Outline of Presentation

- Background
- Motivation
- DyREM Dataflow
- Architecture Design
- Evaluation

Evaluation Setup

- Benchmarks:
- VQE, QAOA, FALCON, DJ algorithms
- Baselines:
- IBM Mthree [1], Google IBU [2], QuFEM [3], SpREM [4]
- Experimental platforms:
- NVIDIA A100 GPU (Mthree, IBU)
- AMD EPYC 9554 64-core CPU (QuFEM)
- Xilinx Alveo U50 FPGA (SpREM, DyREM)

^[2] Pokharel, Bibek, et al. "Scalable measurement error mitigation via iterative bayesian unfolding." Physical Review Research 6.1 (2024): 013187.

^[3] Tan, Siwei, et al. "QuFEM: Fast and Accurate Quantum Readout Calibration Using the Finite Element Method." ASPLOS. 2024.

^[4] Zhang, Hanyu, et al. "SpREM: Exploiting Hamming Sparsity for Fast Quantum Readout Error Mitigation." DAC. 2024.

Hardware Performance

- Benchmarks:
- VQE, QAOA, DJ algorithms (16, 20, 24, 28 qubits)
- Metrics:
- Latency (s), Q-throughput (states/s)

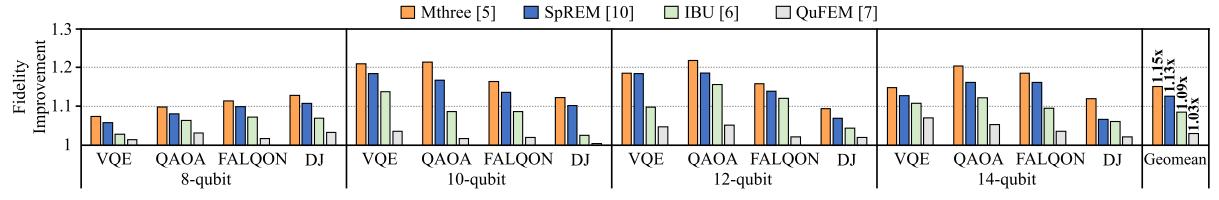
Baseline	Technical feature	VQE [12]		QAOA [13]		DJ [14]	
		Latency (s)	Q-throughput (states/s)	Latency (s)	Q-throughput (states/s)	Latency (s)	Q-throughput (states/s)
Mthree [5]	Hamming pruning	2.52 (384×)	$7.27 \times 10^3 \ (583 \times)$	4.22 (461×)	$4.63 \times 10^3 \ (758 \times)$	0.66 (206×)	$2.77 \times 10^4 \ (192 \times)$
SpREM [10]	HDSR format	0.48 (73.8×)	$1.76 \times 10^6 \ (2.4 \times)$	0.56 (61.5×)	$1.49 \times 10^6 \ (2.3 \times)$	0.031 (9.6×)	$3.43 \times 10^6 \ (1.5 \times)$
IBU [6]	Bayesian unfolding	13.0 (2000×)	$3.58 \times 10^5 \ (11.8 \times)$	17.1 (1879×)	$2.72 \times 10^5 \ (12.9 \times)$	4.59 (1437×)	$1.01 \times 10^6 \ (5.2 \times)$
QuFEM [7]	Finite element analysis	11.7 (1800×)	$1.56 \times 10^3 \ (2726 \times)$	13.5 (1483×)	$1.45 \times 10^3 \ (2420 \times)$	5.42 (1687×)	$2.65 \times 10^3 \ (2002 \times)$
DyREM	Redundancy detection	6.52×10^{-3}	$4.24 imes 10^6$	9.12×10^{-3}	$3.51 imes 10^6$	3.25×10^{-3}	$5.31 imes 10^6$

(1) Average speedup: 9.6X ~ 2000X; (2) Q-throughput improvement: 1.5X ~ 2726X

- Our dataflow leverages the output sparsity and avoids redundant operations.
- We design a dedicated accelerator to support this dataflow.

Mitigation Fidelity

- Benchmarks:
- VQE, QAOA, FALCON, DJ algorithms (8, 10, 12, 14 qubits)
- Metric:
- Fidelity

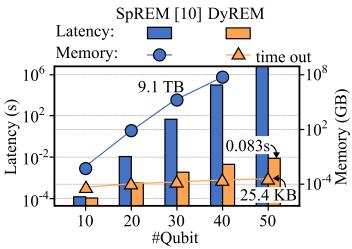


Average fidelity improvement: 1.15X, 1.13X, 1.09X, and 1.03X

- We eliminate the quantum states that do not contribute to fidelity.
- We use the grouping matrix to consider the crosstalk.

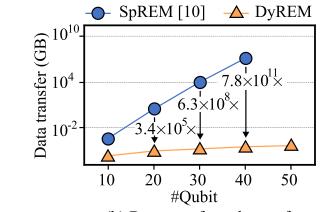
Comparison with SpREM

Latency and Memory



(a) Latency and memory usage of mitigating the DJ algorithm.

Data Transfer



(b) Data transfer volume of mitigating the DJ algorithm.

Our accelerator calculates the mitigation matrix on-chip, avoiding the limitation of finite bandwidth.

