
DyREM: Dynamically Mitigating Quantum 
Readout Error with Embedded Accelerator

Kaiwen Zhou1, Liqiang Lu1 *, Hanyu Zhang1, Debin Xiang1,
Chenning Tao1, Xinkui Zhao1, Size Zheng2, Jianwei Yin1

1Zhejiang university, 2ByteDance Ltd



Kaiwen Zhou

2

First-year Ph.D. student in CS, Zhejiang University

Research interests:

• Quantum Computer Architecture

• Quantum Error Correction

Advisor: Prof. Liqiang Lu

Homepage: https://liqianglu-zju.github.io/



Outline of Presentation

• Background

• Motivation

• DyREM Dataflow

• Architecture Design

• Evaluation



Quantum Readout

4

𝑞1

𝑞2

𝑞3

𝑞4

Circuit block
Readout

sample 1 2 3 4 4

𝑞1 0 1 1 1 0

𝑞2 1 0 1 1 1

#Sample = 5000

4999 5000

1 0

1 1

···

Measured bitstrings in different samples Probability distribution

0.6

0.1
0.2

0.1

0.00

0.50

00 01 10 11

◼ Quantum readout reads the information from quantum bits to classical bits.
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◼ Quantum readout reads the information from quantum bits to classical bits.
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However, the quantum readout process suffers from readout error.
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◼ Readout error is significant on current quantum hardware.
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◼ Readout error is significant on current quantum hardware.

Long readout

latency
Crosstalk

Imperfect

discriminator

◼ Error sources

It is essential to mitigate readout errors to obtain reliable results.

5.3 X
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① Prepares qubits to different basis states and

apply measurement.
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③ Inverse the noisy matrix
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5-qubit mitigation matrix: 25 × 25

The size exponentially increases!

3 Steps to Obtain Mitigation Matrix 𝑴

10-qubit mitigation matrix: 210 × 210

…

② Fill the noisy matrix
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𝑃𝑚𝑖𝑡𝑖 = 𝑀1⊗𝑀2⊗⋯⊗𝑀𝑘 ∙ 𝑃𝑛𝑜𝑖𝑠𝑦

𝑃𝑚𝑖𝑡𝑖 = 𝑀 ∙ 𝑃𝑛𝑜𝑖𝑠𝑦

sub-mitigation matrices

Each submatrix shows 

exponential reduction in size.

Key Idea: Tensor-Product Approximation
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𝑃𝑚𝑖𝑡𝑖 = 𝑀1⊗𝑀2⊗⋯⊗𝑀𝑘 ∙ 𝑃𝑛𝑜𝑖𝑠𝑦

𝑃𝑚𝑖𝑡𝑖 = 𝑀 ∙ 𝑃𝑛𝑜𝑖𝑠𝑦

≈ ⊗⊗ ⊗ ⊗

sub-mitigation matrices

Each submatrix shows 

exponential reduction in size.

Qubit Group and Sub-Mitigation Matrix

Each physical qubit corresponds 

to a 2x2 meta matrix.

IBM Mthree [1] and Google IBU [2].

Key Idea: Tensor-Product Approximation

Good scalability, low fidelity 

(crosstalk-unaware).

[1] Nation, Paul D., et al. "Scalable mitigation of measurement errors on quantum computers." PRX Quantum 2.4 (2021): 040326.

[2] Pokharel, Bibek, et al. "Scalable measurement error mitigation via iterative bayesian unfolding." Physical Review Research 6.1 (2024): 013187.
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◼ QuFEM (ASPLOS 2024)
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A divide-and-conquer strategy to mitigate the noisy distribution.
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◼ SpREM (DAC 2024)

Pruning based on Hamming Distance Hardware Architecture

Hamming

distance

Original matrix Pruned matrix

HDSR format
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Breakdown of End-to-End Latency

◼ 16-qubit QAOA

◼ Iteration: 30 times

◼ 3 stages: 

• Compilation, Execution, Mitigation

◼ Platforms:

• Quantum: 156-qubit IBM_fez processor

• Classical: AMD EPYC 9554 64-core CPU
Classical-side mitigation dominates the runtime!
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Breakdown of End-to-End Latency

Classical-side mitigation dominates the runtime!

◼ 16-qubit QAOA

◼ Iteration: 30 times

◼ 3 stages: 

• Compilation, Execution, Mitigation

◼ Platforms:

• Quantum: 156-qubit IBM_fez processor

• Classical: AMD EPYC 9554 64-core CPU
Goal: Reduce the mitigation time with a dedicated accelerator.
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Qubit Groups of Prior Works
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Qubit Groups of Prior Works

Static Static
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Dynamically Changing Measured QubitsQubit Groups of Prior Works

Static Static
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Dynamically Changing Measured QubitsQubit Groups of Prior Works

Static Static

Apply the grouping scheme of QuFEM

(state-of-the-art)
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Dynamically Changing Measured QubitsQubit Groups of Prior Works

Dynamic

Pre-determined matrices

can not be reused 

Static



Challenge 2: Static Qubit Group

23

Dynamically Changing Measured QubitsQubit Groups of Prior Works

Dynamic Dynamically
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Static

Dynamically Changing Measured QubitsQubit Groups of Prior Works

Dynamic Dynamically

generated

Static StaticGoal: Enable the dynamic readout error mitigation.
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DyREM Dataflow Overview
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Downsampled Groups Generation
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◼ We define the concept of downsampled group 𝒈𝒊,

determined by the original groups 𝐺𝑖 and measured qubits.

◼ Unmeasured physical qubits are denoted by ⊘

original group

quantum device

topology

downsampled group



does not involve the subsequent

calculation of the mitigation matrix 

Matrix Downsampling
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◼ We categorize downsampled groups into three types:

• Unmeasured (e.g., 𝑔2)

• Fully measured (e.g., 𝑔3)

• Partially measured (e.g., 𝑔0 and 𝑔1)

Unmeasured Fully Measured

𝑚2 = 1 (𝑠𝑐𝑎𝑙𝑎𝑟)
copy
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Partially Measured
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Downsampling is essentially a convolution process.

We can compute the kernel size and values based on 𝑔𝑖.



Nonzero State-Oriented Computation
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Mitigation Matrix Compression

Noisy distribution

Zero states
output sparsity
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Mitigation Matrix Compression

Noisy distribution

Zero states
output sparsity

Full-dimensional

mitigation matrix

Compressed

mitigation matrix

compression

locate



Nonzero State-Oriented Computation
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Nonzero State Similarity Detection

decompose extract multiply



Nonzero State-Oriented Computation
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Nonzero State Similarity Detection
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Nonzero State Detector
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Software Side Hardware Side



Nonzero State Detector
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Software Side Hardware Side

Detection of identical columns in each window

1

1

2

2

1

Computation of the similar table2



Mitigation Core
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Software Side Hardware Side

Details of Mitigation Core
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Software Side Hardware Side

The computation of reuse data

1 2
2

1

3

2

1

Element-wise multiplication 

3 Matrix-vector multiplication

Details of Mitigation Core
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Evaluation Setup
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◼ Benchmarks:

• VQE, QAOA, FALCON, DJ algorithms

◼ Baselines:

• IBM Mthree [1], Google IBU [2], QuFEM [3], SpREM [4]

◼ Experimental platforms:

• NVIDIA A100 GPU (Mthree, IBU)

• AMD EPYC 9554 64-core CPU (QuFEM)

• Xilinx Alveo U50 FPGA (SpREM, DyREM)

[1] Nation, Paul D., et al. "Scalable mitigation of measurement errors on quantum computers." PRX Quantum 2.4 (2021): 040326.

[2] Pokharel, Bibek, et al. "Scalable measurement error mitigation via iterative bayesian unfolding." Physical Review Research 6.1 (2024): 013187.

[3] Tan, Siwei, et al. "QuFEM: Fast and Accurate Quantum Readout Calibration Using the Finite Element Method." ASPLOS. 2024.

[4] Zhang, Hanyu, et al. "SpREM: Exploiting Hamming Sparsity for Fast Quantum Readout Error Mitigation.” DAC. 2024.



Hardware Performance

48

◼ Benchmarks:

• VQE, QAOA, DJ algorithms (16, 20, 24, 28 qubits)

◼ Metrics:

• Latency (s), Q-throughput (states/s)

(1) Average speedup: 9.6X ~ 2000X; (2) Q-throughput improvement: 1.5X ~ 2726X

• Our dataflow leverages the output sparsity and avoids redundant operations.

• We design a dedicated accelerator to support this dataflow.



Mitigation Fidelity
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◼ Benchmarks:

• VQE, QAOA, FALCON, DJ algorithms (8, 10, 12, 14 qubits)

◼ Metric:

• Fidelity

Average fidelity improvement: 1.15X, 1.13X, 1.09X, and 1.03X

• We eliminate the quantum states that do not contribute to fidelity.

• We use the grouping matrix to consider the crosstalk.



Comparison with SpREM
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Latency and Memory Data Transfer

• Our accelerator calculates the mitigation matrix on-chip, 

avoiding the limitation of finite bandwidth.



Thanks for listening

Q & A
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