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Abstract

Quantum readout error significantly reduces measurement fidelity. Existing methods face high latency due to the dynamic
generation of mitigation matrices. DyREM proposes a software-hardware co-design approach that mitigates errors by
exploiting sparsity in the nonzero probability distribution of quantum states and calculating the tensor product on an
embedded accelerator. The dataflow of DyREM dynamically downsamples the original mitigation matrix, dramatically
reducing memory requirements. The accelerator architecture of DyREM also flexibly gates redundant computation.
Experiments demonstrate that DyREM outperforms existing methods in both speed (9.6x to 2000x speedup) and fidelity
(1.03x to 1.15x improvement).
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DyREM Dataflow Overview
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Nonzero State-Oriented Computation

To enable on-chip mitigation matrix calculation, we propose

nonzero state-oriented computation, comprising two steps:

 Mitigation Matrix Compression: We observe that the
ideal distribution usually lies in the noisy distribution,
which only contains a few nonzero values. Therefore, we
exploit this output sparsity from the noisy distribution to
compress the mitigation matrix.

* Nonzero State Similarity Detection: We 1identify the
similarity by partitioning the states mto different windows
and computing a similar table for our accelerator. We avoid
redundant calculations within each window to effectively

calculate the mitigation matrix.

DyREM Hardware Architecture

We design an accelerator architecture to implement DyREM,

primarily consisting of two components:

* Nonzero State Detector: The nonzero state detector
efficiently calculates the length of the longest identical
segment for each window. It integrates an early termination
unit with an adder. The early termination unit consists of a
comparator and a NOT gate.

* Mitigation Core Array: The mitigation core array receives
the values from downsampled matrices and noisy
probabilities. Each mitigation core (MC) employs a three-
layer multiplier to compute the mitigation matrix and the
MVM step effectively. Within the MC, we set up a FIFO
for each multiplier (1st layer) to stockpile the values from
downsampled matrices. In particular, the FIFO 1n the first

row 1s used to calculate the reused data.
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Figure 3: Illustration of nonzero state similarity detection.
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(a) Nonzero state detector with early termination unit.
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(b) The mitigation module with dedicated mitigation core.

Figure 4: The detailed hardware design of DyREM.

* Mitigation Latency: DyREM achieves an average speedup of 9.6X ~ 2000X.

* Q-throughput (states/s): DyREM achieves an average improvement of 1.5X ~ 2726X.

* Fidelity: DyREM achieves average improvements of 1.15X,
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Figure 5: The fidelity improvement over baselines.
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