
Vegapunk: Accurate and Fast Decoding for Quantum LDPC Codes
with Online Hierarchical Algorithm and Sparse Accelerator

Kaiwen Zhou
Zhejiang University
Hangzhou, China

kaiwenzhou@zju.edu.cn

Liqiang Lu∗
ZJU-Ningbo Global Innovation Center

Zhejiang University
Ningbo, China

liqianglu@zju.edu.cn

Debin Xiang
Zhejiang University
Hangzhou, China

db.xiang@zju.edu.cn

Chenning Tao
Zhejiang University
Hangzhou, China
tcn@zju.edu.cn

Anbang Wu
Shanghai Jiao Tong University

Shanghai, China
anbang@cs.sjtu.edu.cn

Jingwen Leng
Shanghai Jiao Tong University

Shanghai, China
leng-jw@sjtu.edu.cn

Fangxin Liu
Shanghai Jiao Tong University

Shanghai, China
liufangxin@sjtu.edu.cn

Mingshuai Chen
Zhejiang University
Hangzhou, China
m.chen@zju.edu.cn

Jianwei Yin∗
ZJU-Ningbo Global Innovation Center

Zhejiang University
Ningbo, China

zjuyjw@zju.edu.cn

Abstract
Quantum Low-Density Parity-Check (qLDPC) codes are a promis-
ing class of quantum error-correcting codes that exhibit constant-
rate encoding and high error thresholds, thereby facilitating scalable
fault-tolerant quantum computation. However, real-time decoding
of qLDPC codes remains a significant challenge due to the high
connectivity of their check matrices, which typically requires solv-
ing large-scale linear systems with sparse structures. In particu-
lar, off-the-shelf qLDPC decoders are often subject to a tradeoff
between accuracy and latency, thus yielding no accurate and real-
time decoding. This paper presents Vegapunk, a software-hardware
co-design framework that enables real-time qLDPC decoding with
high accuracy. To improve decoding accuracy, we design an of-
fline decoupling strategy leveraging Satisfiability Modulo Theories
(SMT) optimizations to mitigate quantum degeneracy. To enable
fast decoding, we introduce an online hierarchical decoding algo-
rithm employing a greedy strategy. Furthermore, we show that our
SMT-optimized strategy suffices to produce decoupled matrices
with maximized sparsity, thus admitting a dedicated accelerator
to fully exploit the sparsity and parallelism to achieve real-time
qLDPC decoding. Experimental results demonstrate that Vegapunk
enables real-time decoding (< 1𝜇𝑠) for the Bivariate Bicycle (BB)
code up to [[784,24,24]] while exhibiting logical error rates on par
with the state-of-the-art decoder, i.e., BP+OSD.

∗Corresponding Author

This work is licensed under a Creative Commons Attribution 4.0 International License.
MICRO ’25, Seoul, Republic of Korea
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1573-0/25/10
https://doi.org/10.1145/3725843.3756084

CCS Concepts
•Hardware→ Quantum error correction and fault tolerance;
• Computer systems organization→ Real-time system archi-
tecture.

Keywords
Quantum error correction, qLDPC codes, real-time decoding

ACM Reference Format:
Kaiwen Zhou, Liqiang Lu, Debin Xiang, Chenning Tao, Anbang Wu, Jing-
wen Leng, Fangxin Liu, Mingshuai Chen, and Jianwei Yin. 2025. Vega-
punk: Accurate and Fast Decoding for Quantum LDPC Codes with On-
line Hierarchical Algorithm and Sparse Accelerator. In 58th IEEE/ACM
International Symposium on Microarchitecture (MICRO ’25), October 18–
22, 2025, Seoul, Republic of Korea. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3725843.3756084

1 Introduction
Quantum Error Correction (QEC) is essential for realizing large-
scale, fault-tolerant quantum computing [14, 18]. Among various
QEC codes, the surface code has been extensively studied and exper-
imentally implemented due to its high noise threshold and locality-
friendly structure [1, 2, 16, 17, 25]. However, the surface code suffers
from poor scalability: it requires hundreds or even thousands of
physical qubits to encode a single logical qubit, resulting in substan-
tial overhead that limits the feasibility of building large quantum
systems [20, 29, 44]. Quantum Low-Density Parity-Check (qLDPC)
codes provide a promising alternative. The qLDPC code is defined
by a sparse checkmatrix, where each row corresponds to a stabilizer
and each column to a data qubit. A ‘1’ in the check matrix indicates
that the associated stabilizer acts on that qubit. This sparse check
matrix enables an asymptotically constant encoding rate, making
qLDPC codes more resource-efficient than the surface code [7, 38].
Notably, IBM recently introduced the Bivariate Bicycle (BB) code [6]
– a family of qLDPC codes achieving a high error threshold of 0.7%

https://orcid.org/0009-0005-1017-8878
https://orcid.org/0000-0002-3801-6847
https://orcid.org/0009-0004-5333-6955
https://orcid.org/0000-0002-9221-0317
https://orcid.org/0009-0000-2596-9385
https://orcid.org/0000-0002-5660-5493
https://orcid.org/0000-0002-8769-293X
https://orcid.org/0000-0001-9663-7441
https://orcid.org/0000-0003-4703-7348
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3725843.3756084
https://doi.org/10.1145/3725843.3756084

MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea Kaiwen Zhou, Liqiang Lu, Debin Xiang, et al.

and 10× saving in physical qubit overhead compared to the surface
code. This demonstrates the potential of qLDPC codes as a scalable
architectural solution for superconducting platforms.

An accurate and real-time decoder plays a pivotal role in QEC.
QEC involves a tight interplay between quantum computers and
classical decoding. On the quantum side, parity qubits periodically
extract error syndromes by interacting with nearby data qubits,
forming discrete Pauli error signatures at the end of each QEC cycle.
On the classical side, a decoder uses these syndromes to infer and
correct errors on the data qubits before the next QEC round. The de-
coder must be accurate, as any incorrect correction can induce log-
ical errors that propagate through the quantum circuit, ultimately
leading to computational failure. Meanwhile, the decoder must op-
erate in real-time. If decoding lags behind syndrome generation, the
system accumulates a syndrome backlog, where unprocessed error
data delays subsequent quantum operations [23, 41]. This latency
overhead scales exponentially with the circuit depth.

The 2D-grid structure of surface codes allows for various real-
time decoders, e.g., [3, 43, 46], based on the efficient Minimum-
Weight Perfect Matching (MWPM) algorithm [47]. However, these
MWPM-based decoders cannot be directly applied to qLDPC codes
due to structural differences. In qLDPC codes, each data qubit is
connected to more than two parity qubits, creating a hypergraph
structure rather than a simple graph. This increased complexity
renders the MWPM algorithm ineffective, as matching in hyper-
graphs is an NP-hard problem [10]. As a result, decoding algorithms
for qLDPC codes differ significantly from those for surface codes.
The most representative decoding algorithms for qLDPC codes are
Belief Propagation (BP) [34] and Belief Propagation with Ordered
Statistics Decoding (BP+OSD) [15]. BP is a message-passing algo-
rithm that iteratively approximates the error probabilities over the
Tanner graph [48, 49]. It approximates the error probabilities of
data qubits, refining these estimates with each iteration, ideally
converging to the most likely error pattern. If BP fails to converge,
BP+OSD invokes OSD to post-process the decoding result. OSD
first ranks physical qubits based on their error probabilities from BP.
It then selects a subset of qubits, assumes a likely error pattern, and
solves a constrained linear system to test if the pattern matches the
observed syndrome. This process is repeated across many candidate
patterns to find the most likely error pattern.

Nevertheless, BP and BP+OSD fail to achieve both high accuracy
and low latency. BP is promising for real-time decoding due to its
low complexity and high parallelism, making it suitable for hard-
ware such as FPGAs and ASICs [28, 42]. However, BP suffers from
low accuracy due to quantum degeneracy, where distinct error pat-
terns produce the same syndrome [27, 48]. This issue arises because
the number of columns in the check matrix far exceeds the num-
ber of rows. BP does not account for this degeneracy, which often
converges to incorrect solutions. Although BP+OSD improves ac-
curacy by using OSD, it incurs substantial latency due to sequential
operations such as linear system solving. These costly operations
make BP+OSD impractical for achieving real-time decoding. The
trade-off between accuracy and latency underscores the urgent
need for a practical qLDPC decoder to bridge this gap.

In this paper, we present Vegapunk, a software-hardware co-
designed decoding framework that achieves both accurate and fast
qLDPC decoding. To improve decoding accuracy, we propose an

offline decoupling strategy that pre-processes the original wide check
matrix into smaller submatrices to mitigate quantum degeneracy.
The challenge here is to ensure that the decoupling not only reduces
computational complexity but also enhances the decoding accuracy.
To achieve this, we cast the matrix decoupling as a Satisfiability
Modulo Theories (SMT) optimization task. The goal is to find a
row- and column-transformed check matrix with a diagonal block
structure and a sparse off-diagonal matrix. Importantly, this matrix
transformation depends only on the qLDPC code structure and can
thus be pre-computed and stored for fast online decoding.

To enable fast decoding, we propose an online hierarchical decod-
ing algorithm. While the diagonal blocks are suitable for parallel
decoding, the remaining off-diagonal matrix introduces dependency
that makes direct parallelism difficult. To address this, we treat the
decoding problem as the sum of two parts: the left error, associ-
ated with the diagonal blocks, and the right error, linked to the
off-diagonal matrix. By handling the right error first and then itera-
tively identifying the left error using a greedy decoding method, we
reduce interdependencies and enable fast convergence. This pro-
cess continues until an optimal solution is found or the maximum
iteration limit is reached.

To achieve real-time decoding of qLDPC codes, we design the
Vegapunk hardware accelerator to fully exploit the sparsity and
parallelism inherent in our decoding algorithm. Given the sparse
and parallel nature of our online hierarchical decoding, we design
the syndrome incremental update unit to effectively compute the
residual syndrome by skipping redundant operations. Furthermore,
we introduce the greedy decoding cores to decode the left error
in parallel. Each greedy decoding core comprises the syndrome
incremental update unit, the log-likelihood ratio compute unit, and
a comparator tree to efficiently identify the most probable errors.

Our main contributions are as follows:
• We present Vegapunk, a software-hardware co-design frame-
work that enables accurate and real-time qLDPC decoding.
• We introduce an offline decoupling strategy to improve de-
coding accuracy by decomposing the original check matrix
into smaller matrices. By formulating this as an SMT prob-
lem, wemaximize the sparsity of decoupledmatrices, thereby
facilitating efficient hardware acceleration.
• We propose an online hierarchical decoding algorithm to
realize fast decoding, leveraging a greedy strategy to decode
the error in parallel. We further design the Vegapunk accel-
erator to exploit the sparsity and parallelism of our decoding
algorithm, yielding real-time qLDPC decoding.

Experimental results show that Vegapunk achieves a worst-case
decoding latency of 840𝑛𝑠 for the BB code [[784,24,24]], maintain-
ing logical error rates comparable to the state-of-the-art decoder,
BP+OSD. The low overheads of Vegapunk demonstrate its practi-
cality for fault-tolerant quantum computing.

2 Background
2.1 Quantum Error Correction Process
Quantum Error Correction (QEC) encodes a logical qubit using
multiple physical qubits, including data qubits and parity qubits.
The data qubits store the quantum information, while parity qubits
detect 𝑋 and 𝑍 errors on the data qubits [8, 13, 40]. Figure 1 (a)

Vegapunk: Accurate and Fast Decoding for Quantum LDPC Codes
with Online Hierarchical Algorithm and Sparse Accelerator MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea

General qLDPC Code

Two Types of BB Codes:

Higher

 Encoding

Rate

ConstraintSyndrome Extraction Surface Code

Data
Qubit

StabilizersClassical
Decoder

(Accurate, Fast)

Control

Processor

Syndrome

Extraction Circuit

Parity Qubits

(a) (b) (c)

Logical Qubit

M
ea

su
re

1
C

or
re

ct
io

n
3

D

D

D

D

D

P P

D

Noise

Syndrome2Instruction4

Code Distance:
Logical Qubits:
Data Qubits:

DD

DD

D

X

X

Z

Z
DD

D

X

X

D

Z

Z
Error Syndrome

Input

...

... ...

...

...

=

Check Matrix

...

...

...X X X

Z Z Z

DD DD D

...

Five errors satisfy
the constraint

Select the most
likely error e e

...
Output

Figure 1: (a) Overview of the quantum error correction process. (b) The code parameters [[𝑛, 𝑘 , 𝑑]] and structure of the surface
code and general qLDPC code, respectively. (c) The check constraint of decoding qLDPC codes. The error pattern should satisfy
the constraint given the input syndrome. We select the most likely error as the output.

illustrates the QEC process, which mainly consists of four steps
that are executed in cycles to protect the logical qubit from errors
caused by noise: ❶ The syndrome extraction circuit is executed on
parity qubits to generate syndrome. The parity qubits interact with
their neighboring data qubits to extract their error information.
After the syndrome is obtained, a bitstring where ‘1’ indicates a
failed parity check, implying an error in the neighboring data qubit.
❷ The syndrome is sent to a classical decoder, which identifies
likely error locations on the data qubits. A good decoder must be
fast and accurate, preventing error accumulation or backlog and
precisely identifying all errors [11]. ❸ The decoder computes a
logical correction and sends it to the control processor. ❹ The
control processor receives the correction, updates its operations,
and sends QEC instructions to correct logical errors. After that, it
initiates the next round of syndrome extraction.

2.2 Basics of qLDPC Code
Like other QEC codes, qLDPC codes are characterized by three key
parameters: (1) the number of data qubits 𝑛 in a logical block, (2)
the number of encoded logical qubits 𝑘 , and (3) the code distance
𝑑 , which quantifies the minimum number of physical qubit errors
required to cause a logical error. These three properties can be
denoted as [[𝑛, 𝑘 , 𝑑]] to describe a QEC code. As illustrated on the
left side of Figure 1 (b), the surface code [[9, 1, 3]] encodes one
logical qubit using nine data qubits, with a code distance of 3. A
larger code distance 𝑑 indicates better error tolerance. At least 𝑛−𝑘
ancilla qubits are required to perform parity checks on data qubits.

To better understand the characteristics of qLDPC codes, we
compare them with surface codes regarding connectivity, encoding
rate, and decoding complexity: (1) Connectivity. Surface codes, de-
fined by the 2D lattice structure, exhibit low and local connectivity
(degree-4 for each stabilizer). As depicted in Figure 1 (b), each stabi-
lizer checks a small, fixed number of nearby qubits (typically four),
which often simplifies the decoding process. In contrast, qLDPC
codes feature higher and non-local connectivity. In this work, we
focus on CSS qLDPC codes, which are defined by two check matri-
ces 𝐷𝑋 and 𝐷𝑍 , representing the connections between data qubits
and 𝑋 -type, 𝑍 -type stabilizers, respectively. The non-local connec-
tivity in qLDPC codes enables high encoding rates and large code
distances but complicates decoding, since decoders must manage

BB code HP code

310

210

110LE
R

 In
cr

ea
se

 (
tim

es
)

12
10
8
6
4
2
0

362 452 542 722
Quantum Degeneracy (2)

(a)

n-m Quantum Degeneracy (2)
(b)

n-m

1442 3922 812 1442 1692 3722 4412 7442

8.75 X
1.78 X

11.5 X1649.5 X

Figure 2: LER increase due to quantum degeneracy, under
0.1% circuit-level noise. (a) BB codes, from [[72,12,6]] to
[[784,24,24]]. (b) HP codes, from [[162,2,4]] to [[1488,30,7]].

information propagation over long-range connections; (2) Encod-
ing Rate. The encoding rate is defined as 𝑘/𝑛, with a higher value
indicating fewer physical qubits required for the same number of
logical qubits. Surface codes typically exhibit a low encoding rate
(e.g., 1/𝑛), making them resource-intensive. For instance, the surface
code [[1452,12,11]] requires 1452 data qubits to encode 12 logical
qubits. In contrast, the Bivariate Bicycle (BB) code [6] [[144,12,12]],
a representative qLDPC code, achieves the same number of logical
qubits using only 144 data qubits; (3) Decoding Complexity. The
2D-grid structure of surface codes enables efficient decoding using
polynomial-time algorithms such as MWPM [47]. In contrast, the
sparse yet irregular connectivity of qLDPC codes leads to decoding
being NP-hard, since even the minimum weight decoding problem
is computationally intractable in general [4, 24].

2.3 qLDPC Decoding
In a CSS qLDPC code, the check matrix 𝐷 is composed of two parts:
𝐷𝑋 , which represents 𝑋 -type parity checks, and 𝐷𝑍 , which repre-
sents 𝑍 -type parity checks [31]. These two sets of stabilizers must
commute, which indicates the constraint 𝐷𝑋 · 𝐷𝑇𝑍 = 0. The 𝑋 and
𝑍 errors can be decoded separately using 𝐷𝑍 and 𝐷𝑋 , respectively.
Both 𝐷𝑍 and 𝐷𝑋 consist of 𝑚 parity checks, where each parity
check corresponds to an 𝑛-length vector, where 𝑛 is the number of
data qubits. This vector indicates the specific data qubits to which
the parity qubit is connected. Due to the high encoding rate of
qLDPC codes, the number of columns 𝑛 significantly exceeds the
number of rows𝑚 in the check matrix, with 𝑛 being at least twice
the magnitude of𝑚.

MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea Kaiwen Zhou, Liqiang Lu, Debin Xiang, et al.

The decoding problem for qLDPC codes can be formulated as a
minimum weight decoding problem, which is NP-hard [24]. The
objective is to find the most likely error pattern ®𝑒𝑜𝑝𝑡 given the
syndrome ®𝑠 . The following constraint and objective function define
the problem:

®𝑒𝑜𝑝𝑡 = argmin
®𝑒

∑︁
𝑗

𝑤 𝑗𝑒 𝑗

𝑠 .𝑡 . 𝐷𝑍 · ®𝑒 = ®𝑠

where ®𝑠 = (𝑠1, 𝑠2, ..., 𝑠𝑚)𝑇 represents the syndrome, corresponding
to the measurement results of each parity qubit, ®𝑒 = (𝑒1, 𝑒2, ..., 𝑒𝑛)𝑇
is the error pattern, representing the errors in the data qubits. The
weights𝑤 𝑗 = 𝑙𝑜𝑔

1−𝑝 𝑗
𝑝 𝑗

are the log-likelihood ratio (LLR) based on
the prior probability 𝑝 𝑗 . In terms of decoding, a significant chal-
lenge is the phenomenon of quantum degeneracy, illustrated in Fig-
ure 1 (c). This refers to the existence of 2𝑛−𝑚 possible error patterns
satisfying the same syndrome, which increases decoding complex-
ity. For qLDPC codes, this issue is exacerbated due to their wider
and sparser check matrices, leading to a much larger degenerate
subspace and more ambiguous error candidates. To quantitatively
explain the impact of quantum degeneracy on the Logical Error
Rate (LER), we decode varying BB codes and HP codes using BP and
BP+OSD (Section 2.4) and compute the increase in LER, as shown
in Figure 2. Notably, BP does not consider degeneracy, whereas
BP+OSD does. Due to the impact of degeneracy, the LER increases
by an average of 320.3× and 5.1× on BB codes and HP codes, re-
spectively. Furthermore, as 𝑛 −𝑚 increases (indicating more severe
degeneracy), the LER increase becomes more significant.

2.4 BP and BP+OSD Decoder
Here, we introduce two most representative decoders for qLDPC
codes, Belief Propagation (BP) [34] and BP with Ordered Statis-
tics Decoding (BP+OSD) [15]. BP is an iterative algorithm that
exchanges messages between nodes on a Tanner graph [26]. Each
node updates its outgoing messages based on incoming messages,
aiming to find the most probable error pattern given the syndrome.
However, due to quantum degeneracy, BP often fails to converge,
necessitating the execution of OSD. OSD first sorts the columns of
the check matrix 𝐷 based on the error probabilities of data qubits
from BP. Then, it performs Gaussian elimination with a pivot se-
lection rule that prioritizes the most reliable qubit. Finally, OSD
searches for a solution by flipping combinations of the least reliable
bits. Since iterating over exponential combinations is impractical,
BP+OSD-0 and BP+OSD-CS(𝑡) [39] are proposed to balance time
complexity and accuracy. BP+OSD-0 outputs the hard-decision so-
lution after Gaussian elimination, achieving suboptimal accuracy.
BP+OSD-CS(𝑡) tries all 1- and 2-bit flips among the 𝑡 least reliable
bits, achieving improved accuracy at the cost of increased latency.

3 Motivation
In this section, we identify the limitations of current qLDPC de-
coders, specifically BP [34] and BP+OSD [15], by evaluating their
Logical Error Rate (LER) and latency. These limitations highlight
the need to achieve accurate and real-time qLDPC decoding.

We evaluate the performance of BP and BP+OSD on Bivari-
ate Bicycle (BB) codes [6] of varying sizes, from [[72,12,6]] to

(b)
Data qubits of BB code# Data qubits of BB code

(a)

BP+OSDBPBP (1µs, max_iter=125)

La
te

nc
y

pe
r

ro
un

d
(µ

s)

510
410
310
210
110
1

7842881441089072

High Latency

LE
R

 p
er

 r
ou

nd

-110

-210

-310

-410

7842881441089072

16
49

.5
 X

Low Accuracy

Real-Time Boundary (1µs)

Figure 3: Motivation of Vegapunk. (a) LER (per round) of BP
(1𝜇𝑠), BP, and BP+OSD, respectively. (b) Decoding latency (per
round) of BP and BP+OSD, respectively. BP stops as soon as
it converges.

[[784,24,24]], using a circuit-level noise model with a physical error
rate 𝑝 = 0.001. BP is implemented on an Xilinx Alveo U50 FPGA
at 250 MHz, utilizing the hardware architecture from [42], where
each iteration takes two cycles. For BP+OSD, we choose BP+OSD-
CS(7) version to achieve significantly improved decoding accuracy.
We execute BP+OSD-CS(7) on an AMD EPYC 9554 64-core CPU,
using the implementation from [39]. We now discuss the two key
challenges uncovered by our experiments:

Challenge 1: Low Accuracy. A good decoder should show a
decrease in LER as code distance increases, which is achieved by
BP+OSD as shown in Figure 3 (a). However, we find that the LER of
BP gradually increases, indicating that its decoding is completely
ineffective in practical scenarios [1]. Specifically, the LER of BP
is 1649.5× higher than that of BP+OSD when decoding BB code
[[784,24,24]]. Furthermore, when we limit the number of BP iter-
ations to 125 to satisfy the 1𝜇𝑠 time constraint, its LER increases
further due to insufficient convergence.

Challenge 2: High Latency. As shown in Figure 3 (b), BP
achieves real-time decoding only for the small BB code [[72,12,6]];
for larger codes, the decoding time exceeds the 1𝜇𝑠 boundary. While
BP can be parallelized and has a time complexity of 𝑂 (𝑛), its high
memory bandwidth requirements and sequential iterations lead to
excessive latency when scaling to larger code sizes. BP+OSD, on
the other hand, operates when BP fails to converge and requires
additional costly steps such as sorting and matrix inversion. Even
for the small BB code [[72,12,6]], BP+OSD still needs around 103𝜇𝑠 .
Given the complex and sequential nature of OSD, it is unrealistic to
design a dedicated accelerator for BP+OSD that meets the real-time
latency requirement using current VLSI technologies [42].

Thus, these two challenges motivate the development of Vega-
punk, a qLDPC decoder that strikes a balance between hardware
efficiency and decoding accuracy. This design choice reflects a prac-
tical trade-off: Vegapunk can meet the real-time requirement (1𝜇𝑠)
while achieving decoding accuracy comparable to BP+OSD, making
it well-suited for superconducting platforms.

4 Vegapunk Algorithm
We propose an offline SMT-optimized decoupling to address the
accuracy challenge (Challenge 1) caused by quantum degeneracy.
By decomposing the check matrix 𝐷 into smaller diagonal block
matrices, we mitigate the quantum degeneracy that arises from a
wide check matrix. To tackle the latency challenge (Challenge 2),

Vegapunk: Accurate and Fast Decoding for Quantum LDPC Codes
with Online Hierarchical Algorithm and Sparse Accelerator MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea

... ...

...
...

Input:

Syndrome

(a) Offline SMT-Optimized Decoupling (Section 4.2)

(b) Online Hierarchical Decoding (Section 4.3)

Check
Matrix Decoupled Check Matrix

...

...
...

Permutation

Matrix

Transforma-
tion Matrix

Decode Left Error

GreedyGuess

GreedyGuess

Permutation

...

... ...

...
...

...

Output:
Error

Transformation

Left ErrorU
pd

at
e

R
ig

ht
 E

rr
or

......

...

Guess Right Error

Sparse
Matrix

Diagonal Block Matrix

static static static

=

Right Error Sparse

MVM

Sparse

XOR

Le
ft

an
d

R
ig

ht
 E

rr
or

Figure 4: Overview of Vegapunk algorithm. (a) Applying the
transformation and the permutation matrix to decouple the
wide checkmatrix. (b) Utilizing the online hierarchical decod-
ing to identify the error pattern given the input syndrome.

we introduce an online hierarchical decoding strategy that maxi-
mizes parallelism and exploits sparsity. Instead of directly applying
the quantum maximum likelihood decoding constraints for qLDPC,
we reformulate the constraints equation in a hardware-friendly
way for better efficiency. We also present a new online hierarchical
decoding algorithm with lower complexity than BP-based methods.

4.1 AlgorithmWorkflow
The algorithm workflow is shown in Figure 4. For each qLDPC
code, the ideal decomposition aims to transform the check matrix
into a diagonal block structure. This decomposition would allow
the matrix to be treated as smaller, independent blocks, each of
which could be solved in parallel. However, achieving this ideal
decomposition directly is impractical. Instead, we opt for a partially
diagonal-blocked matrix, with a sparse matrix remaining at the
end. To achieve this, we apply a transformation matrix 𝑇 and a
permutation matrix 𝑃 to the check matrix 𝐷 . Finding the optimal𝑇
and 𝑃 is a significant challenge, which we address by reformulating
the decomposition problem as an SMT problem. This allows us to
use an SMT solver to find the optimal transformation. We define a
set of constraints to ensure the decomposed matrices adhere to the
desired structure, with the goal of maximizing sparsity. The trans-
formation and permutation matrices are represented as Boolean
variables, and the resulting matrices are then stored for use in our
online hierarchical decoding algorithm.

The online hierarchical decoding algorithm takes the syndrome
®𝑠 as input and applies the transformation matrix 𝑇 . The original
constraint 𝐷 · ®𝑒 = ®𝑠 is reformulated to create a set of diagonal matri-
ces that enable parallel decoding. This is achieved by splitting the

(b) Constraints

(1) No subset
of rows can
XOR to zero.

...

!=

...... + + =... ...

...

...+
+

=...

...

(2) Each row and column
must contain exactly one
non-zero element.

(3) A diagonal-blocked
matrix on the left and each
block has an identity matrix.

... ...
......

...

...

Boolean

Variable

Boolean

Expression

1 0

Objective:

To Ensure Sparsity(a) Variable Definition and Objective

...

...

... ...

...
...

Transformation PermutationCheck Matrix

=

...

...

Decoupled Matrix

Figure 5: Formulation of check matrix decoupling.

error vector ®𝑒 into two parts: the left errors ®𝑙 corresponding to the
diagonal block matrices [𝑑𝑖𝑎𝑔(𝐷1, 𝐷2, . . . , 𝐷𝐾)], and the right error
®𝑟 corresponding to the sparse matrix 𝐴. By isolating the right error
on the right side, we obtain a fully diagonal matrix for the left er-
rors and a residual syndrome on the right, yielding the formulation
[𝑑𝑖𝑎𝑔(𝐷1, 𝐷2, . . . , 𝐷𝐾)] · ®𝑙 = ®𝑠 ⊕𝐴 · ®𝑟 . During decoding, we start by
guessing the right error, gradually increasing the number of ones in
each iteration. The right error is then used to compute the residual
syndrome, which is used to decode the left error. The left error is
decoded by GreedyDecode function. The diagonal block matrices
enable parallel decoding for each matrix. The best left error result
is selected and used to update the right error. After reaching the
maximum number of iterations, the right and left errors are con-
catenated and multiplied by the permutation matrix 𝑃 to obtain the
final error.

4.2 Offline SMT-Optimized Decoupling
The decoupling of the check matrix must preserve the relationship
between error patterns and the syndrome in Equation (1). In other
words, we aim to find a reversible transformation of Equation (1).
In linear algebra, only multiplication with a full-rank square matrix
is reversible. Thus, we employ the following transformation to the
original𝑚 × 𝑛 check matrix 𝐷 :

𝐷′ = 𝑇 · 𝐷 · 𝑃 (1)

where 𝑇 is the 𝑚 × 𝑚 full-rank transformation matrix, 𝑃 is the
𝑛 × 𝑛 permutation matrix, and 𝐷′ is the resulting check matrix.
Under this transformation, the maximum likelihood decoding in
Equation (1) becomes:

®𝑒′𝑜𝑝𝑡 = argmin
®𝑒′

∑︁
𝑗

𝑤 𝑗 ®𝑒′𝑗

𝑠 .𝑡 . 𝐷′ · ®𝑒′ = ®𝑠′
(2)

where ®𝑒′ = 𝑃−1 · ®𝑒 is the permutated error (𝑃−1 is the inverse
matrix of 𝑃) and ®𝑠′ = 𝑇 · ®𝑠 is transformed syndrome. To recover
the optimal original error, we decode Equation (2) to obtain the

MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea Kaiwen Zhou, Liqiang Lu, Debin Xiang, et al.

optimal permuted error ®𝑒′𝑜𝑝𝑡 and recover the optimal original error
by ®𝑒𝑜𝑝𝑡 = 𝑃 · ®𝑒′𝑜𝑝𝑡 .

For the resulting check matrix 𝐷′, we aim to transform it into
the following form:

𝐷′ = (𝑑𝑖𝑎𝑔(𝐷1, 𝐷2, · · · , 𝐷𝐾), 𝐴) (3)

where 𝑑𝑖𝑎𝑔(𝐷1, 𝐷2, · · · , 𝐷𝐾) is a diagonal block matrix and 𝐴 is an
arbitrary sparse matrix. To simplify our online decoding algorithm,
we further require that each 𝐷𝑖 contains an identity matrix on the
left. Specifically,

𝐷𝑖 = (𝐼 , 𝐵) (4)

where 𝐼 is the identity matrix, and 𝐵 is an arbitrary matrix. The
notation (·, ·) is the horizontal concatenation of two matrices. Next,
we explain how to search for the appropriate transformation matrix
𝑇 and permutation matrix 𝑃 to achieve this partial block-diagonal
structure in 𝐷′.

Variables.We set the transformation matrix 𝑇 and the permu-
tation matrix 𝑃 as the Boolean variables, as shown in Figure 5 (a).
By Equation (1), we can represent the elements of 𝐷′ by variable 𝑇
and 𝑃 ,

𝐷′ [𝑖, 𝑗] =
𝑛∑︁
𝑞=1

𝑚∑︁
𝑘=1

𝑇 [𝑖, 𝑘]𝐷 [𝑘, 𝑞]𝑃 [𝑞, 𝑗] (5)

Constraints. The constraints for the decoupling process are
summarized in Figure 5 (b).
(1) Transformation Matrix. The transformation matrix 𝑇 must

be a full-rank matrix, meaning its rows are linearly independent.
Specifically, no subset of the rows can XOR to a zero vector:

𝑚∑︁
𝑗=1
⊕𝑖∈Δ𝑇 [𝑖, 𝑗] > 0, ∀Δ ⊆ {1, · · · ,𝑚}/∅ (6)

where Δ is the non-empty subset of all row indexes.
(2) Permutation Matrix. The permutation matrix must satisfy

that each row and column must contain exactly one non-zero
element.

𝑛∑︁
𝑗=1

𝑃 [𝑖, 𝑗] = 1, ∀𝑖 ∈ {1, · · · , 𝑛}

𝑛∑︁
𝑖=1

𝑃 [𝑖, 𝑗] = 1, ∀𝑗 ∈ {1, · · · , 𝑛}
(7)

(3) Decoupled Matrix. The decoupled matrix 𝐷′ must satisfy the
specific shape we defined. The constrains on 𝐷′ are as follows:
• Each block in the decoupled matrix must have the same shape,
denoted𝑚𝐷 × 𝑛𝐷 . The total number of rows and columns in
𝐷′ must satisfy the following relationship:

𝑚𝐷 · 𝐾 =𝑚,𝑚 ≤ 𝑛𝐷 · 𝐾 ≤ 𝑛 (8)

where 𝐾 is the number of blocks, and𝑚 and 𝑛 are the dimen-
sions of the original matrix.
• All elements outside the blocks, except for the right part 𝐴,
must be zero.

𝐷′ [𝑖 ·𝑚𝐷 + 𝑡, 𝑗 · 𝑛𝐷 + 𝑘] = 0,∀𝑖, 𝑗 (𝑖 ≠ 𝑗) ∈ {1, · · · , 𝐾}
∀𝑡 ∈ {1, · · · ,𝑚𝐷 },∀𝑘 ∈ {1, · · · , 𝑛𝐷 }

(9)

• Each block in the decoupled matrix must have an identity
matrix on the left side as shown in Equation (4).

𝐷′ [𝑖 ·𝑚𝐷 + 𝑡, 𝑖 · 𝑛𝐷 + 𝑡] = 1,∀𝑖 ∈ {1, · · · , 𝐾},∀𝑡 ∈ {1, · · · ,𝑚𝐷 }
𝐷′ [𝑖 ·𝑚𝐷 + 𝑡, 𝑖 · 𝑛𝐷 + 𝑘] = 0,∀𝑖 ∈ {1, · · · , 𝐾},

∀𝑡, 𝑘 (𝑡 ≠ 𝑘) ∈ {1, · · · ,𝑚𝐷 }
(10)

Objective Function. We aim to make the new check matrix 𝐷′
sparse to facilitate the hardware design, meaning that we seek to
minimize the total number of nonzero elements in 𝐷′.

min
𝑇,𝑃

𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝐷′ [𝑖, 𝑗] (11)

The constraints in Equation (5∼10) and the objective in Equa-
tion (11) are then passed to the SMT solver [12] to find solutions
for the transformation matrix 𝑇 and permutation matrix 𝑃 .

Caveats of CheckMatrixDecomposition. The decomposition
only needs to be performed once per check matrix, and is executed
entirely offline by an SMT solver. As shown in Equation (1), this
decomposition relies onmathematically equivalent transformations,
thus inducing no approximations. In principle, any check matrix
can be transformed into the form of Equation (3), ensuring that
a valid block diagonalization is always possible. The number of
diagonal blocks 𝐾 is determined by enumerating all possible factors
of the number of rows𝑚; the latter is upper-bounded by𝑚/𝑆 , where
𝑆 represents the column sparsity (i.e., the maximum number of non-
zero elements across all columns). This upper bound exists because,
mathematically, the number of columns𝑚/𝐾 in each decomposed
block matrix is at least the original column sparsity 𝑆 , i.e.,𝑚/𝐾 ≥ 𝑆 .
For instance, given a checkmatrix with 36 rows and column sparsity
6, the candidate value for𝐾 can be 6, 4, 3, or 2. We iteratively invoke
the SMT solver against increasingly smaller 𝐾 (i.e., starting with
𝐾 = 6), and the first successful solution determines both the value
of 𝐾 and its corresponding block structure.

We further analyze the relationship between check matrix de-
composition and the code structure on specific qLDPC codes. For BB
codes, the 𝑋 -type check matrix, denoted as 𝐻 = (𝑓 (𝑥,𝑦), 𝑔(𝑥,𝑦)),
is defined by two polynomials 𝑓 (𝑥,𝑦) and 𝑔(𝑥,𝑦). Here, 𝑥 = 𝑆𝑙 ⊗ 𝐼𝑚
and 𝑦 = 𝐼𝑙 ⊗ 𝑆𝑚 , where 𝐼𝑙 and 𝑆𝑙 are the 𝑙 × 𝑙 identity and the cyclic
shift matrices, respectively. Through this structure, we find that the
number of block matrices can be 𝐾 = max(min(𝑙,𝑚), 𝑙×𝑚

𝑆
). For HP

codes, the𝑋 -type check matrix can be denoted as (𝐻1 ⊗ 𝐼𝑔, 𝐼𝑡 ⊗𝐻𝑇2),
where 𝐻1, 𝐻2 are check matrices of two classical codes, and 𝐼𝑡 is
a 𝑡 × 𝑡 identity matrix. We can see that 𝐼𝑡 ⊗ 𝐻𝑇2 is a diagnal block
matrix since 𝐼𝑡 ⊗ 𝐻𝑇2 = diag(𝐻𝑇2 , 𝐻

𝑇
2 , · · · , 𝐻

𝑇
2). Then, we can set

the off-diagonal matrix 𝐴 as 𝐻1 ⊗ 𝐼𝑔 and each block matrix 𝐷𝑖 as
𝐻𝑇2 . Thus, the number of block matrices 𝐾 is 𝑡 .

4.3 Online Hierarchical Decoding
Problem Formulation. Our goal is to decompose the original
constraint into a set of smaller constraints that can be solved in
parallel. This is straightforward when the transformed matrices 𝐷′
are diagonal block matrices. However, in our case, the decoupled
matrices include a sparse matrix 𝐴 on the right, which requires
additional processing. To handle this, we split the error ®𝑒′ into two
parts: ®𝑙 and ®𝑟 . The ®𝑙 corresponds to the set of diagonal blockmatrices

Vegapunk: Accurate and Fast Decoding for Quantum LDPC Codes
with Online Hierarchical Algorithm and Sparse Accelerator MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea

Algorithm 1: Hierarchical Decoding
Input :Syndrome vector ®𝑠 , Transformation matrix𝑇 , Permutation

matrix 𝑃 , Decoupled check matrices 𝐴,𝐷1, 𝐷2, · · · , 𝐷𝐾 ,
the number of columns in 𝐴 𝑛𝐴 , the maximum iteration M.

Output : Identified error pattern.
1 ®𝑠′ ← 𝑇 · ®𝑠 ;
2 ®𝑟𝑏𝑒𝑠𝑡 , 𝑑𝑚𝑖𝑛 ← [0, 0, · · · , 0] (length is 𝑛𝐴),∞;
3 for 𝑘 = 1 to M do
4 for 𝑖 = 1 to 𝑛𝐴 do
5 ®𝑟 ← ®𝑟𝑏𝑒𝑠𝑡 ; ®𝑟 [𝑖] ← 1; ®𝑠𝑙 ← ®𝑠′ ⊕ 𝐴®𝑟 ;
6 {®𝑠𝑙1 , · · · , ®𝑠𝑙𝐾 } ← Split ®𝑠𝑙 by the rows of {𝐷1, · · · , 𝐷𝐾 };
7 ®𝑙 ← [GreedyGuess(𝐷 𝑗 , ®𝑠𝑙 𝑗) ∀ 𝑗 ∈ {1, · · · , 𝐾 }];
8 𝑑 ← ∑𝑛

𝑗=1 𝑤𝑗 (®𝑙, ®𝑟) 𝑗 ;
9 d[𝑖], l[𝑖], r[𝑖] ← 𝑑, ®𝑙, ®𝑟 ;

10 𝑖𝑏𝑒𝑠𝑡 ← argmin𝑖 d[𝑖];
11 if d[𝑖𝑏𝑒𝑠𝑡] < 𝑑𝑚𝑖𝑛 then
12 𝑑𝑚𝑖𝑛, ®𝑙𝑏𝑒𝑠𝑡 , ®𝑟𝑏𝑒𝑠𝑡 ← d[𝑖𝑏𝑒𝑠𝑡], l[𝑖𝑏𝑒𝑠𝑡], r[𝑖𝑏𝑒𝑠𝑡];
13 else
14 Break;

15 Return 𝑃 · [®𝑙𝑏𝑒𝑠𝑡 , ®𝑟𝑏𝑒𝑠𝑡];

𝑑𝑖𝑎𝑔(𝐷1, 𝐷2, · · · , 𝐷𝐾), and ®𝑟 corresponds to the sparse matrix 𝐴.
This transforms the constraint into the following form:

𝑑𝑖𝑎𝑔(𝐷1, 𝐷2, · · · , 𝐷𝐾) · ®𝑙 ⊕ 𝐴®𝑟 = ®𝑠′ (12)

The symbol ⊕ denotes a bit-wise XOR operation between two vec-
tors, since the decoding is performed within the binary field {0, 1}.
Here, we name 𝐴®𝑟 as the right-part syndrome ®𝑠𝑟 . Then, we move ®𝑠𝑟
to the right-hand side and define the left-part syndrome ®𝑠𝑙 = ®𝑠′ ⊕ ®𝑠𝑟 ,
resulting in:

𝑑𝑖𝑎𝑔(𝐷1, 𝐷2, · · · , 𝐷𝐾) · ®𝑙 = ®𝑠𝑙 (13)
This reformulated decoding constraint involves the check matrices
𝑑𝑖𝑎𝑔(𝐷1, 𝐷2, · · · , 𝐷𝐾) and the left-part syndrome ®𝑠𝑙 . We can split
®𝑠𝑙 into smaller components {®𝑠𝑙1 , · · · , ®𝑠𝑙𝐾 } according to the block
matrices. The problem is transformed into a set of smaller, indepen-
dent constraint problems, where each constraint corresponds to
one of the smaller check matrices. These constraints are decoupled
from each other and can be solved in parallel:

𝐷 𝑗®𝑙 𝑗 = ®𝑠𝑙 𝑗 , ∀𝑗 ∈ {1, · · · , 𝐾} (14)

Hierarchical DecodingAlgorithm. Based on our new problem
formulation, we propose a two-step online hierarchical decoding
algorithm, as outlined in Algorithm 1. The algorithm begins by
initializing the transformed syndrome vector (line 1). The initial
guess for the right error ®𝑟 is set to an all-zero vector, with the
initial likelihood of the error vector set to infinity (line 2). Next, the
decoding process proceeds by gradually increasing the number of
ones in right error ®𝑟 until the maximum iteration limit M is reached
(line 3). In each iteration, we apply the two-step decoding strategy:
first, we guess the right error ®𝑟 , and then decode the left error ®𝑙 .
Specifically, we explore the right error ®𝑟 by flipping one of its bits,
and then calculate the left-part syndrome ®𝑠𝑙 (line 5). The left-part
syndrome ®𝑠𝑙 is then split according to the rows of 𝐷1, . . . , 𝐷𝐾 (line
6). We proceed by decoding the left error ®𝑙 using the GreedyGuess

Right Part Left Part Objective

=

=

=

1st Iter.

...

=

=

2nd Iter.
...

Minimum

Objective Value

Best Solution

Discard

Discard

Update

Initial

Break
Best

Solution

Output

Figure 6: An execution example of GreedyGuess.

function (line 7), and then computing the weighted summation of
the left error ®𝑙 and right error ®𝑟 (line 8). At this point, we check if
the current objective is smaller than the best solution found so far
(line 10). If it is, we update the best solution for the next iteration
(line 12). If not, we terminate the process (line 14) and return the
best solution found up to that point (line 15).

GreedyGuess is introduced to decode the left error ®𝑙 under the
constraint specified in Equation (14). Leveraging the decoupled
structure of the check matrix, 𝐷𝑖 = [𝐼 , 𝐵], where 𝐼 is an identity
matrix, we reformulate the error vector into two parts: ®𝑓 , corre-
sponding to 𝐼 , and ®𝑔, corresponding to 𝐵. The constraint can then
be rewritten as:

𝐼 ®𝑓 ⊕ 𝐵 ®𝑔 = ®𝑠𝑙 𝑗 ⇒ ®𝑓 = 𝐵 ®𝑔 ⊕ ®𝑠𝑙 𝑗 (15)

Our goal is to minimize the objective function 𝑑 =
∑
𝑗 𝑤 𝑗
®𝑙 𝑗 , and

each data qubit 𝑗 has its own weight𝑤 𝑗 . To achieve this, we adopt a
guessing strategy for the number of ones in ®𝑔, starting with the least
number and gradually increasing it. This search process follows a
similar approach to Algorithm 1.

Figure 6 provides an example illustrating the GreedyGuess func-
tion. In this example, we assume that all data qubits have the same
prior probabilities for simplicity, so the objective is to minimize the
number of ones in the left error ®𝑙 . Initially, the right part ®𝑔 is set to
an all-zero vector, and from Equation (15), the left part ®𝑓 is equal to
the syndrome vector ®𝑠𝑖 . Thus, the current minimal objective for the
full error vector is 𝑑𝑚𝑖𝑛 = 2. In the first iteration, we flip one bit in
®𝑔 and compute the corresponding left part ®𝑓 . We discard that solu-
tion if the total objective exceeds 𝑑𝑚𝑖𝑛 . For example, flipping ®𝑔 to
[1, 0, 0, 0] or [0, 0, 0, 1] results in worse objectives, while [0, 1, 0, 0]
minimizes the objective to 1. We then update ®𝑔 and set 𝑑𝑚𝑖𝑛 = 1,
proceeding to the next iteration. In the second iteration, we flip
another bit of ®𝑔 except for the second bit. Since this iteration does
not improve the objective, we stop the process and return the best
solution found: ®𝑔 = [0, 1, 0, 0] and ®𝑓 = [0, 0, 0, 0].

MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea Kaiwen Zhou, Liqiang Lu, Debin Xiang, et al.

Table 1: Complexity of Vegapunk and prior works.

Method Serial (Limited P) Parallel (Sufficient P)

BP [34] 𝑂 (Mbp · 𝑛P) 𝑂 (Mbp)

BP+LSD [22] 𝑂 (Mbp · 𝑛P + (polylog(𝑛) + 𝜅
3) · 𝑛/𝜅P) 𝑂 (Mbp + polylog(𝑛) + 𝜅3)

BPGD [48] 𝑂 (𝑛Mbp · 𝑛P) 𝑂 (𝑛Mbp)

Vegapunk 𝑂 (𝑛P log𝑛 + 𝑛 ·𝐾
𝑃
· 𝑆) 𝑂 (log𝑛 + 𝑆)

Mbp is the number of iterations of BP. log𝑛 ≤ Mbp ≤ 𝑛.
𝜅 ≤ 1+𝑝

1+𝑝−𝑆𝑝 is the maximum cluster size in BP+LSD and 𝑝 is the physical error rate.

4.4 Complexity Analysis
Here, we analyze the time complexity of our online decoding algo-
rithm in Vegapunk. We consider decoding a𝑚 × 𝑛 check matrix,
where𝑚 is the length of the syndrome vector and 𝑛 is the length of
the error vector. 𝑆 is the maximum number of non-zero elements
across all columns in the check matrix. P denotes the number of
available parallel processing units.

Complexity of Vegapunk. Line 1 of Algorithm 1 initializes the
transformed syndrome vector via a matrix-vector multiplication
followed by a binary-tree XOR reduction, with parallel complexity
𝑂 (𝑚P log𝑚). Lines 3–14 iterate M times (a preset constant). Within
each iteration, lines 4–9 perform𝑂 (𝑛) parallel guesses for the right
error ®𝑟 . Each guess requires computing the left-part syndrome ®𝑠𝑙 in
𝑂 (𝑆) time, exploiting incremental updates and matrix sparsity (line
5). The subsequent parallel decoding of the left error (lines 6–9)
has complexity 𝑂 (𝐾 · M · 𝑆), resulting in a parallel complexity of
𝑂 (𝑛P · 𝑆 +

𝑛 ·𝐾
P · M · 𝑆) = 𝑂 (

𝑛 ·𝐾
P · 𝑆) for lines 4–9. The update step in

lines 10–14 uses a binary-tree comparison, contributing𝑂 (𝑛P log𝑛).
Hence, lines 3–14 have total complexity 𝑂 (𝑛P log𝑛 + 𝑛 ·𝐾P · 𝑆). The
permutation in line 15 takes 𝑂 (𝑛P). Thus, the overall complexity of
Vegapunk is𝑂 (𝑛P log𝑛 + 𝑛 ·𝐾P ·𝑆) since𝑚 is linear to 𝑛 and𝑚 < 𝑛. If
sufficient parallel units are available (i.e., P > 𝑛 ·𝐾), the complexity
reduces to 𝑂 (log𝑛 + 𝑆). In this case, the logarithmic scaling of
decoding latency makes Vegapunk insensitive to code size.

Comparison with Prior Decoders. Table 1 gives the serial
complexity and parallel complexity of prior works and Vegapunk.
Since prior works rely on the results of BP, we use Mbp to denote the
iteration numbers of BP, which is𝑂 (log𝑛) in the best case and𝑂 (𝑛)
in the worst case [34]. We can see that Vegapunk has the lowest
complexity 𝑂 (log𝑛 + 𝑆), which outperforms BP since S is a small
number due to the low-density properties of qLDPC codes. Note that
the BP+LSD states that it only needs to run BP for 30 iterations [22],
so the complexity can be simplified as 𝑂 (polylog(𝑛) + 𝜅3), which
is still higher than Vegapunk.

5 Vegapunk Accelerator
To meet the real-time decoding requirement in supercomputing
quantum systems, we design a custom FPGA-based accelerator to
support our hierarchical decoding algorithm. The accelerator de-
sign is directly derived from the algorithm’s structure, with each
major operation mapped to dedicated logic to minimize latency.
Compared to general-purpose processors, FPGAs are better suited
for this task for two main reasons: (1) Our hierarchical decoding
algorithm involves fine-grained, bit-level operations such as left-
part syndrome computation. These operations do not align well
with the wide-vector execution units in CPUs or GPUs, leading to

>

S
yn

d
ro

m
e

In
cr

em
en

ta
l

U
p

d
at

e
U

n
it

L
L

R
 C

o
m

p
u

te
 U

n
it

Hierarchical Decoding Unit (HDU)

EN

Decoding Core

...

...

...

Transformation

Unit

Sparse Matrix
Buffer

Error Buffer Objective
Value Buffer

Syndrome

Buffer

Permutation

Unit

Comparator

Tree

Params

Update

Execution

 Controller

Greedy Decoding Cores

...

GDC GDC GDC...

GDC GDC GDC...

...

GDC GDC GDC...

Split Syndrome

1

2 3

4

5

Continue Te
rm

in
at

e

Sparse Matrix
Buffer

Figure 7: Overview of Vegapunk accelerator architecture.

low utilization and memory access inefficiencies; (2) FPGA-based
accelerators integrate naturally with superconducting quantum
systems, where the syndrome is typically generated and streamed
by FPGA-based readout modules. A tightly coupled decoder imple-
mented on the same device allows direct data access, avoiding the
delay of transferring data to external processors [23, 37, 43].

As shown in Figure 7, the Vegapunk accelerator comprises three
main components to fully explore the algorithm’s parallelism and
sparsity: a transformation unit, a decoding core, and a permuta-
tion unit. The transformation unit prepares the input syndrome
for decoding by aligning it with the decoupled check matrix. The
decoding core performs the core error decoding procedure using
a parallel greedy strategy. The permutation unit reconstructs the
final error from the decoding output. The decoding core integrates
key submodules, including the Hierarchical Decoding Unit (HDU),
the comparator tree, and the update and control logic, which will
be detailed in the following sections.

5.1 Accelerator Dataflow
The decoding dataflow in each round consists of five main steps, as
demonstrated in Figure 7:

❶ Transformation: The transformation unit takes the original
syndrome ®𝑠 and multiplies the transformation matrix 𝑇 through
sparse Matrix-Vector Multiplication (MVM) to produce the trans-
formed syndrome ®𝑠′. The transformation matrix 𝑇 is pre-loaded
into the sparse matrix buffer.

❷ Objective Value Calculation: The transformed syndrome
®𝑠′ is fed into multiple HDUs, each responsible for calculating the
objective values of candidate error guesses d[𝑖]. Each HDU first
triggers the syndrome incremental update unit to compute the
left-part syndrome ®𝑠𝑙 , by performing sparse MVM and XOR. Then,
the left-part syndrome ®𝑠𝑙 is split into a set of 𝐾 partial syndromes
®𝑠𝑙1 , . . . , ®𝑠𝑙𝐾 and sent to𝐾 Greedy Decoding Cores (GDCs). Each GDC
processes its corresponding block 𝐷 𝑗 with ®𝑠𝑙 𝑗 and outputs a partial
left error ®𝑙 𝑗 = [®𝑓 , ®𝑔]. The outputs from all GDCs are concatenated
into the left error ®𝑙 . The Log-Likelihood Ratio (LLR) compute unit

Vegapunk: Accurate and Fast Decoding for Quantum LDPC Codes
with Online Hierarchical Algorithm and Sparse Accelerator MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea

 Incremental Updating
= 0 = 1

1st Iter.

Column

Index

2nd Iter.
Redundancy

(b)

(a)

Non-zero Row Index Table

Input
= 1

Sparse MVM1

Incremental Updating and Sparse XOR2

2

Address

0 0x1000 2
1 0x1002 2

Non-zero

Number

...
2 0x1004 2

Address Row Index

... ...

0x1002 1
0x1001 4

0x1003 4

write back

XOR

XOR

write back
1

4 1
1

Regfile Regfile

= =

Sparse MVM
Sparse

XOR

==

Sparse Matrix Table

Column
Index

Figure 8: (a) The insight of designing the syndrome incre-
mental update unit, including the sparse opportunity and
redundancy in the computation of the left-part syndrome.
(b) The details of the syndrome incremental update unit.

then calculates the final objective value using the complete error
®𝑒 = [®𝑙, ®𝑟] and weights𝑤 .

❸ Comparison: The comparator tree receives the objective val-
ues d from the HDUs and compares them in parallel to identify the
minimum-weight solution. The output is the best solution d[𝑖best],
corresponding to the minimum-weight error guess.

❹ Parameter Update: The best solution d[𝑖𝑏𝑒𝑠𝑡] from the
comparator tree is compared with the current minimum value
𝑑𝑚𝑖𝑛 . If the new solution reduces the minimum, the params up-
date unit is triggered, and the new values for 𝑑𝑚𝑖𝑛 , ®𝑙𝑏𝑒𝑠𝑡 , and ®𝑟𝑏𝑒𝑠𝑡
are stored. The execution controller monitors the enable signal to
decide whether decoding should continue or terminate.

❺ Permutation: The permutation unit receives the error ®𝑒′ =
[®𝑙best, ®𝑟best] andmultiplies the permutation matrix 𝑃 through sparse
MVM to compute the final error ®𝑒 . The permutation matrix 𝑃 is
also pre-loaded into the sparse matrix buffer.

5.2 Syndrome Incremental Update Unit
As illustrated in Figure 8 (a), to efficiently compute the left-part
syndrome ®𝑠𝑙 = ®𝑠′ ⊕ 𝐴®𝑟 during online hierarchical decoding, we
proposed the syndrome incremental update unit, which has two
features: (1) Sparse MVM and XOR. By exploiting the sparsity of the
right error ®𝑟 , we transform the complex MVM process into simple
row selection. Since the column of the decoupled check matrix 𝐴
is also sparse, we only select the non-zero elements to perform
XOR with the syndrome ®𝑠′, thus accelerating the decoding process;
(2) Incremental Updating. By storing and reusing the left-part syn-
drome ®𝑠𝑙𝑏𝑒𝑠𝑡 corresponding to the identified error bit 𝑖𝑏𝑒𝑠𝑡 from
previous iterations, we avoid recalculating the entire syndrome,
thus significantly reducing redundant computations.

2.6

2.6

6.1

2.6 3.2 6.1 8.2

Comp.

Comp.

Comp.

0.7

0.3

0.5

1.1

1.0

1.6Regfile

0

1

3

4

Guesses

LLR 
Compute 

Unit

Syndrome

Incremental

Update Unit an

d 2.6

1

2

3

2.6

2.6

6.1

Figure 9: Detailed architecture of Greedy Decoding Core
(GDC) to effectively support the GreedyGuess procedure.

Figure 8 (b) shows an example of computing the second iteration
using the syndrome incremental update unit. First, we apply the
❶ sparse MVM to compute ®𝑐1. The sparse matrix 𝐴 is stored using
our proposed compressed format, which includes a sparse matrix
table and a non-zero row index table. The sparse matrix table stores
the column addresses and the number of non-zero elements in
each column, while the non-zero row index table records the row
indices corresponding to these non-zero elements. In the example,
the input column index 𝑖 = 1, so we directly fetch the 1st column
of 𝐴, and extract the row indices of ‘1’s in the 1st column (i.e., 1
and 4) from the non-zero row index table. This non-zero extraction
is prepared for the subsequent sparse XOR. Since any value XORed
with zero remains unchanged, we only need to apply XOR on these
non-zero elements. Next, we perform ❷ incremental updating and
sparse XOR to compute the left-part syndrome ®𝑠𝑙 . We retrieve the
values at the selected row indices (i.e., 1 and 4) from the ®𝑠𝑙𝑏𝑒𝑠𝑡
regfile, XOR them with 1, and write the results back to the ®𝑠𝑙 regfile.
After all syndrome incremental update units have completed, we
select ®𝑠𝑙 corresponding to the identified error bit 𝑖𝑏𝑒𝑠𝑡 in the current
iteration, and store it in the ®𝑠𝑙𝑏𝑒𝑠𝑡 regfile. This enables the data reuse
of the left-part syndrome computation in the following iteration.

5.3 Greedy Decoding Core
We design the Greedy Decoding Core (GDC) to effectively support
theGreedyGuess procedure. Figure 9 illustrates the detailed architec-
ture of the GDC. Each GDC consists of three main components: the
syndrome incremental update unit, the LLR compute unit, and the
comparator tree. Each GDC takes the partial syndrome ®𝑠𝑙 𝑗 and all
the candidate guesses of ®𝑔 as input. Multiple syndrome incremental
update units compute ®𝑓 = (𝐵 · ®𝑔) ⊕ ®𝑠𝑙 𝑗 in parallel, taking advantage
of the sparsity in both the matrix 𝐵 and right part ®𝑔. Once the left
part ®𝑓 is obtained, it is concatenated with ®𝑔 to form the left error
®𝑙 𝑗 = [®𝑓 , ®𝑔]. To evaluate the candidate left error ®𝑙 , we compute the
objective value

∑
𝑖 𝑤𝑖𝑔𝑖 +

∑
𝑗 𝑤 𝑗 𝑓𝑗 . The LLR compute unit performs

this task efficiently by focusing on the non-zero elements of ®𝑓 and ®𝑔,
using their indices to retrieve the corresponding weights from the
𝑤-regfile, and then applying an adder tree to compute the objective
value 𝑑 in parallel. Finally, all the computed objective values are
sent to the comparator tree, which identifies the minimum value.
The left error corresponding to this minimum value is considered
the best solution for the current iteration.

MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea Kaiwen Zhou, Liqiang Lu, Debin Xiang, et al.

10
3

10
4

10
3

10
2

10
1 BB code [[72,12,6]]

(a1)

10
3

10
4

10
3

10
2

10
1 BB code [[90,8,10]]

(a2)

10
3

10
3

10
2

10
1 BB code [[108,8,10]]

(a3)

10
3

10
4

10
3

10
2

10
1 BB code [[144,12,12]]

(a4)

10
3

10
4

10
2

BB code [[288,12,18]]

(a5)

10
3

10
5

10
3

10
1

BB code [[784,24,24]]

(a6)

10
3

10
4

10
3

10
2 HP code [[162,2,4]]

(b1)

10
3

10
4

10
3

10
2

HP code [[338,2,4]]

(b2)

10
3

10
4

10
3

HP code [[288,12,6]]

(b3)

10
3

10
5

10
4

10
3

HP code [[744,20,6]]

(b4)

10
3

10
5

10
4

10
3

10
2

HP code [[882,48,8]]

(b5)

10
3

10
5

10
4

10
3

10
2

HP code [[1488,30,7]]

(b6)

Physical Error Rate

Lo
gi

ca
l E

rro
r R

at
e

pe
r R

ou
nd

BP+OSD BP Ours

Figure 10: The LER for BP [34], BP+OSD-CS(7) [15], and Vegapunk. The physical error rate 𝑝 ranges from 5 × 10−4 to 5 × 10−3.

6 Evaluation
6.1 Evaluation Setup
Implementation: For offline SMT-optimized decoupling, we use
Z3 solver [12] to solve the decoupling problem. For online hier-
archical decoding, we develop Vegapunk accelerator using Xilinx
High-Level Synthesis (HLS) C++ and implement it with Vitis 2023.1.
We set the maximum iteration M of Vegapunk to 3. We evaluate its
hardware performance on the Xilinx Alveo U50 FPGA at 250 MHz.
We also implement CPU and GPU versions of Vegapunk, and run
them on the AMD EPYC 9554 64-core CPU and NVIDIA GeForce
RTX 4070 Ti GPU, respectively.

Baselines: We compare Vegapunk with state-of-the-art qLDPC
decoders, including BP [34], BP+OSD [15], BP+LSD [22] and BPGD
[48]. For BP, we set the maximum iterations to the number of data
qubits 𝑛 in qLDPC codes and choose the min-sum algorithm as
the node information update method. We implement BP on the
Xilinx Alveo U50 FPGA at 250MHz, consistent with Vegapunk. For
BP+OSD, we choose the BP+OSD-CS(7) version since it offers a
high decoding accuracy [39]. The maximum iteration of BP is set to
𝑛. We run the OSD part on the AMD EPYC 9554 64-core CPU due to
its sequential nature. For BP+LSD, we set the maximum iteration of
BP to 30 and the order to 0. For BPGD, we set the maximum rounds
to 𝑛 and the number of BP iterations per round to 100.

Benchmarks: The benchmarks include two types of qLDPC
codes: (1) Bivariate Bicycle (BB) codes [6] and (2) Hypergraph Prod-
uct (HP) codes [5], as listed in Table 2. We choose six BB codes, with

the size ranging from [[72,12,6]] to [[784,24,24]]. For HP codes, we
use two ring codes with distances 9 and 13 to build [[162,2,4]] and
[[338,2,4]] codes, respectively. Additionally, four other HP codes
are derived from [33], constructed using two bicycle codes.

Noise Model: For BB codes, we consider a circuit-level error
model and leverage the syndrome measurement circuit from [6].
The physical error rate 𝑝 ranges from 5 × 10−4 to 5 × 10−3. This
error range encompasses the noise levels typically observed in cur-
rent superconducting quantum devices, thus effectively evaluating
the decoder’s performance under realistic conditions. The circuit-
level noise is sampled from (1) depolarizing errors (𝑋,𝑌, 𝑍) on data
qubits at the beginning of each round, (2) depolarizing errors on
data and parity qubits after syndrome extraction operations, (3)
measurement errors, and (4) reset errors. For HP codes, we con-
sider a phenomenological noise model with data qubit errors and
measurement errors.

Metrics: The performance of Vegapunk is evaluated using three
key metrics: (1) Logical Error Rate (LER), (2) latency, and (3) accu-
racy threshold. We assume Vegapunk receives a syndrome every
1𝜇𝑠 (corresponds to one measurement round). After receiving 𝑑
rounds of syndromes, Vegapunk applies a correction operation to
the logical qubit and measures its state. A logical error occurs if the
logical measurement does not match the initially prepared state.
We repeat the decoding process multiple times under the noise
model, with each syndrome sampled and generated by the Stim
package [19]. The overall LER 𝑃𝐿 is calculated as the ratio of suc-
cessful decodings to the total number of trials. The LER per round

Vegapunk: Accurate and Fast Decoding for Quantum LDPC Codes
with Online Hierarchical Algorithm and Sparse Accelerator MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea

Table 2: qLDPC codes for benchmarking, corresponding decoupled check matrices, and decoding performance of decoders.

Code
Type

Code
Notation

Check
Matrix
Shape

Decoupled Check Matrices Accuracy Threshold (%) Latency per Round (0.5% circuit-level noise)

𝐴 shape
(Spars.∗)

𝐷𝑖 shape
(Spars.∗) 𝐾 BP BP+OSD-

CS(7) Vegapunk BP† BP+OSD-
CS(7)

Vegapunk (worst case)

CPU GPU FPGA

BB

[[72,12,6]] [36, 360] [36,108] (6) [6, 42] (3) 6 0.020 0.112 0.091 694𝑛𝑠 0.98𝑚𝑠 39.3𝜇𝑠 76.8𝜇𝑠 720𝑛𝑠
[[90,8,10]] [45, 450] [45,135] (6) [9, 63] (3) 5 0.020 0.110 0.125 1104𝑛𝑠 2.02𝑚𝑠 46.4𝜇𝑠 84.9𝜇𝑠 732𝑛𝑠
[[108,8,10]] [54, 540] [54,162] (6) [6, 42] (3) 9 0.016 0.065 0.060 1400𝑛𝑠 3.03𝑚𝑠 52.5𝜇𝑠 92.5𝜇𝑠 732𝑛𝑠
[[144,12,12]] [72, 720] [72,216] (6) [6, 42] (3) 12 0.017 0.132 0.149 2387𝑛𝑠 6.77𝑚𝑠 100.3𝜇𝑠 99.2𝜇𝑠 732𝑛𝑠
[[288,12,18]] [144, 1440] [144,432] (6) [12, 84] (3) 12 0.006 0.186 0.196 7009𝑛𝑠 38.6𝑚𝑠 115.5𝜇𝑠 104.1𝜇𝑠 780𝑛𝑠
[[784,24,24]] [392, 3920] [392,1176] (6) [28, 196] (3) 14 0.002 0.213 0.227 25881𝑛𝑠 449𝑚𝑠 547.8𝜇𝑠 116.1𝜇𝑠 840𝑛𝑠

Average - - - - - 0.013 0.136 0.141 6412𝑛𝑠 83.4𝑚𝑠 150.3𝜇𝑠 95.6𝜇𝑠 756𝑛𝑠

HP

[[162,2,4]] [81, 243] [81,81] (2) [9, 18] (2) 9 0.167 0.377 0.268 151𝑛𝑠 0.18𝑚𝑠 17.9𝜇𝑠 69.3𝜇𝑠 264𝑛𝑠
[[338,2,4]] [169, 507] [169,169] (2) [13, 26] (2) 13 0.094 0.261 0.175 282𝑛𝑠 0.43𝑚𝑠 37.4𝜇𝑠 81.1𝜇𝑠 276𝑛𝑠
[[288,12,6]] [144, 432] [144,144] (4) [12, 24] (4) 12 0.622 0.674 0.777 72𝑛𝑠 0.19𝑚𝑠 30.3𝜇𝑠 85.3𝜇𝑠 432𝑛𝑠
[[744,20,6]] [372, 1116] [372,372] (4) [31, 62] (4) 12 0.350 2.176 1.455 578𝑛𝑠 1.93𝑚𝑠 80.8𝜇𝑠 86.5𝜇𝑠 480𝑛𝑠
[[882,48,8]] [441, 1323] [441,441] (5) [63, 126] (3) 7 0.237 0.798 0.768 735𝑛𝑠 6.66𝑚𝑠 98.1𝜇𝑠 93.6𝜇𝑠 526𝑛𝑠
[[1488,30,7]] [744, 2232] [744,744] (4) [31, 62] (4) 24 0.228 0.819 0.775 1875𝑛𝑠 11.7𝑚𝑠 150.7𝜇𝑠 94.9𝜇𝑠 492𝑛𝑠

Average - - - - - 0.283 0.851 0.703 616𝑛𝑠 3.52𝑚𝑠 69.2𝜇𝑠 85.1𝜇𝑠 412𝑛𝑠

∗ Spars.: The maximum number of ones in the columns of the matrix.
† The hardware-accelerated architecture of BP is derived from [42].

𝑝𝐿 is defined as [21]:

𝑝𝐿 = 1 − (1 − 𝑃𝐿) (1/𝑑) (16)

where 𝑑 is the code distance. The accuracy threshold 𝑝𝑡 is the phys-
ical error rate when error correction becomes effective. Specifically,
when the physical error rate 𝑝 is lower than 𝑝𝑡 , the LER per round
𝑝𝐿 becomes lower than 𝑝 . A higher accuracy threshold indicates
greater tolerance of the decoder to physical error rates. The theo-
retical relationship between 𝑝𝐿 and 𝑝 follows the equation:

ln𝑝𝐿 = 𝑘 ln𝑝 + (1 − 𝑘) ln𝑝𝑡 (17)

where 𝑘 and 𝑝𝑡 are the const parameters. We can get the accuracy
threshold 𝑝𝑡 by fitting the experimental data of LER per round 𝑝𝐿
under different physical error rates 𝑝 .

6.2 Decoding Performance
Logical Error Rate. As shown in Figure 10, Vegapunk with maxi-
mum iteration M = 3 achieves LER comparable to the state-of-the-art
qLDPC decoder BP+OSD-CS(7), while consistently outperforming
the BP decoder. Specifically, Vegapunk delivers lower LER than
BP+OSD-CS(7) for certain BB codes [[90,8,10]] (a2) and [[144,12,12]]
(a4), HP codes [[288,12,6]] (b3) and [[744,20,6]] (b4). Across these
codes, Vegapunk yields average improvements of 1.33× for BB codes
and 1.51× for HP codes. While the LER of Vegapunk for BB codes
[[72,12,6]] (a1) and [[108,8,10]] (a3) is higher than BP+OSD-CS(7)
at physical error rates below 10−3, it shows the advantage at higher
physical error rates, achieving an average 1.34× improvement at a
physical error rate of 5 × 10−3. For larger codes such as BB codes
[[288,12,18]] and [[784,24,24]], both BP+OSD-CS(7) and Vegapunk
exhibit a remarkable LER of 10−5 at a physical error rate of 5×10−4.
In contrast, the BP decoder fails to correct errors in these codes,
resulting in consistently higher LER across all physical error rates.
The comparable decoding accuracy of Vegapunk to BP+OSD-CS(7)

Table 3: Visual examples of decoupled check matrices.

Code Off-diagonal Matirx 𝐴 Diagonal Block Matrix 𝐷

B
B
co

de [[
72
,1
2,
6]
]

[[
10
8,
8,
10
]]

H
P
co

de [[
33
8,
2,
4]
]

[[
28
8,
12
,6
]]

can be attributed to two key reasons. First, most error patterns
have low Hamming weight, since the probability of an error pat-
tern occurring decreases exponentially with the number of flipped
bits [43]. Therefore, by setting the maximum number of guesses
(e.g., M=3), Vegapunk is able to cover the vast majority of likely er-
ror patterns. Second, our decoupling strategy significantly reduces
the search space for error patterns, increasing the likelihood of
successful decoding even with a greedy algorithm.

Accuracy Threshold. As shown in Table 2, Vegapunk achieves
an accuracy threshold that is 0.93× that of the BP+OSD-CS(7) de-
coder and 15.8× higher than that of the BP decoder. For large
codes such as BB codes [[288,12,18]], [[784,24,24]] and HP codes
[[882,48,8]], [[1488,30,7]], Vegapunk achieves a threshold compa-
rable to BP+OSD-CS(7), ranging from 0.95× to 1.13×. This high

MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea Kaiwen Zhou, Liqiang Lu, Debin Xiang, et al.

6 1012 18 24
Code Distance

0.0

0.1

0.2

Th
re

sh
ol

d(
%

)

(a)
10

3

Check Matrix Size

10
2

10
3

10
4

La
te

nc
y(

ns
)

(b)

BP+OSD BP Ours

Figure 11: Scalability of Vegapunk, in terms of (a) accuracy
threshold and (b) decoding latency.

fault tolerance stems from our offline decoupling strategy, which
decomposes the check matrix into smaller submatrices. In large
codes, the number of submatrices increases, resulting in smaller
matrix sizes, which in turn benefits decoding accuracy. For small
codes such as HP codes [[162,2,4]] and [[338,2,4]], Vegapunk yields
0.67× to 0.71× the threshold of BP+OSD, but still outperforms BP
by 1.60× to 2.78×.

Latency. We measure the latency of decoders under 0.5% circuit-
level depolarising noise. As detailed in Table 2, Vegapunk achieves
a decoding latency under 1𝜇𝑠 (FPGA) across different qLDPC codes.
Despite the notable speed of BP, it fails to meet the real-time require-
ment as the code size gradually increases(e.g., BB code [[90,8,10]],
1104𝑛𝑠). The latency of BP+OSD-CS(7) far exceeds 1𝜇𝑠 , since its
sequential characteristics are difficult to accelerate effectively in
hardware. By comparing BP and Vegapunk, we find that the la-
tency of Vegapunk is insensitive to the code size but sensitive to
the sparsity of the check matrix. To be specific, while the check
matrix column size for BB codes (with a constant column sparsity
of 6) increases by around 10×, the latency of Vegapunk only rises
from 720𝑛𝑠 to 840𝑛𝑠 (1.16×). For HP codes (with varying column
sparsities of 2, 4, and 5), the latency of Vegapunk ranges from 264𝑛𝑠
to 526𝑛𝑠 , reflecting the direct influence of different sparsity levels.
On the contrary, the latency of the BP decoder is highly sensitive to
the code size. For example, from BB code [[72,12,6]] to [[784,24,24]],
the latency of BP increases by a factor of 37.3×, while the check ma-
trix column size only increases by 10.9×. This is because, to achieve
convergence, the actual number of BP iterations increases with
the code size, leading to a linearly increasing latency. Vegapunk,
however, leverages the sparsity computation and parallel guessing
during online decoding, rendering its latency insensitive to the code
size. Since the check matrix of qLDPC codes is inherently sparse,
Vegapunk is more suited for fast decoding of these codes.

We also implement Vegapunk on both CPU and GPU, with aver-
age latencies of 150.3𝜇𝑠 and 95.6𝜇𝑠 on BB codes, 69.2𝜇𝑠 and 85.1𝜇𝑠
on HP codes, both slower than FPGA. This is because our FPGA
design efficiently handles bit-level sparse operations through the
custom decoding pipeline, while CPU and GPU suffer from low uti-
lization due to wide-vector execution and irregular memory access.
For HP codes, GPU has a slightly higher average latency (85.1𝜇𝑠)
than CPU (69.2𝜇𝑠), mainly due to the overhead of decoding kernel
launch and limited parallelism in small problem sizes.

Scalability. Figure 11 (a) shows the accuracy threshold of BB
codes with different code distances. Error bars represent the uncer-
tainty of fitting experimental data. Both Vegapunk and BP+OSD

Table 4: FPGA utilization of Vegapunk

BB code HP code

Code FFs LUTs Code FFs LUTs

[[72, 12, 6]] 13388(0.77%) 37496(4.30%) [[162,2,4]] 11944(0.69%) 20726(2.38%)

[[90, 8, 10]] 14661(0.84%) 42118(4.83%) [[338,2,4]] 24242(1.39%) 41192(4.72%)

[[108, 8, 10]] 15589(0.89%) 51023(5.85%) [[288,12,6]] 14990(0.86%) 56517(6.48%)

[[144, 12, 12]] 16870(0.97%) 62953(7.22%) [[744,20,6]] 20145(1.16%) 103999(11.93%)

[[288, 12, 18]] 23020(1.32%) 102277(11.73%) [[882,48,8]] 24507(1.41%) 135777(15.57%)

[[784, 24, 24]] 40952(2.35%) 272618(31.26%) [[1488,30,7]] 26385(1.51%) 177954(20.41%)

exhibit increasing thresholds as the code distance increases, indicat-
ing their ability to exploit the error correction capacity of qLDPC
codes. In contrast, BP shows a decreasing trend, highlighting its
inability to effectively leverage the error correction potential of
large codes due to its low decoding accuracy. Figure 11 (b) shows
decoding latency for varying check matrix sizes of Vegapunk and
BP. Error bars represent the standard deviation of latency across
different physical error rates. Vegapunk scales logarithmically with
matrix size, while BP grows linearly and exceeds 1𝜇𝑠 at a size of
5 × 102. This is due to BP’s iterative message passing with linear
time complexity, whereas Vegapunk leverages matrix sparsity and
parallelism for faster decoding. Furthermore, the latency of Vega-
punk is less sensitive to physical error rates than BP, with a lower
standard deviation (62.6 vs. 1080.8 for BP).

6.3 FPGA Utilization
Table 4 shows the FPGA utilization of Vegapunk for six BB and six
HP codes. For example, decoding the medium BB code [[144,12,12]]
uses under 10% of Look-Up Table (LUTs) and 1% of Flip-Flop (FFs),
while the large BB code [[784,24,24]] requires only 31.26% of LUTs
and 2.35% of FFs. Such low demands allow seamless integration
with the FPGA control processor, making Vegapunk well-suited for
real-time qLDPC decoding. Furthermore, LUT usage scales linearly
with the check matrix column size. Fitting the data shows that 100%
LUT utilization occurs only when the matrix column size exceeds
1.26× 104, corresponding to about 2,511 data qubits—the maximum
capacity for implementing Vegapunk on a Xilinx Alveo U50 FPGA.

6.4 Ablation Study
Offline Decoupling Strategy. Figure 12 shows the impact of the
offline decoupling strategy on decoding accuracy, using three types
of BB codes. With the decoupling strategy, Vegapunk achieves
accuracy improvements of 17.9×, 26.1×, and 31.1× compared to
the version of Vegapunk without this strategy. This improvement
stems from the decoupling strategy’s ability to reduce the number
of columns in the check matrix, mitigating the issue of quantum
degeneracy. Additionally, decoding on smaller check matrices en-
hances the effectiveness of the online decoding algorithm, as it
reduces the search space for GreedyGuess, leading to more accurate
error guesses and, consequently, improved decoding accuracy.

Maximum Iteration. Figure 13 illustrates the sensitivity of
decoding performance to the maximum iteration M for BB code
[[288,12,18]] (Figure 13 (a)) and HP code [[288,12,6]] (Figure 13 (b)).
As M increases, the decoding latency grows linearly. However, this
growth slows noticeably beyond M = 5, due to the early-stopping

Vegapunk: Accurate and Fast Decoding for Quantum LDPC Codes
with Online Hierarchical Algorithm and Sparse Accelerator MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea

A
cc

ur
ac

y
Im

pr
ov

em
en

t

Physical Error Rate

BB code
70

50

30

10
1

5e-4 6e-4 7e-4 8e-4 9e-4 1e-3 2e-3 3e-3 4e-3 5e-3

[[72,12,6]]
[[90,8,10]]
[[144,12,12]]

Figure 12: Ablation study of the offline decoupling strategy.

1 3 5 7
Maximum Iteration M

0

5

10

15

La
te

nc
y

(1
00

ns
) BB code [[288,12,18]]

(a)
1 3 5 7

Maximum Iteration M

0

5

10

15

La
te

nc
y

(1
00

ns
) HP code [[288,12,6]]

(b)

0.2

0.3

0.4

0.5

Th
re

sh
ol

d(
%

)

0.0

0.4

0.8

1.2

Th
re

sh
ol

d(
%

)

Latency Threshold

Figure 13: Ablation study of the maximum iteration M on
decoding latency and accuracy threshold.

mechanism in Vegapunk, which terminates the process if no bet-
ter solution is found in a given iteration. In these two codes, the
algorithm stops after five iterations. For the accuracy threshold,
the benefit of increasing M diminishes rapidly. For instance, from
the first to the second iteration, the threshold improves signifi-
cantly—by 34% for BB codes and 195% for HP codes. However, from
the third to the fourth iteration, the gain drops sharply to only 0.5%
and 3.8%, respectively. Moreover, running four iterations on the BB
code [[288,12,18]] results in a latency exceeding 1𝜇𝑠 , leading us to
set M = 3 to balance the decoding accuracy and latency.

6.5 Comparison with BP+LSD and BPGD
To demonstrate the efficacy of our proposed decoding algorithm, we
compare Vegapunk with the state-of-the-art decoders, BP+LSD [22]
and BPGD [48]. We run these three decoders serially on the AMD
EPYC 9554 64-core CPU to decode six BB codes from [[72,12,6]]
to [[784,24,24]], under circuit-level noise with physical error rates
from 5×10−4 to 5×10−3. Figure 14 (a) depicts the decoding latency
per round of three decoders. Vegapunk outperforms both BP+LSD
and BPGD, achieving average speedups of 147.6× and 13.9×, re-
spectively. This is because Vegapunk employs a greedy decoding
strategy and effectively leverages the sparsity in decoupled check
matrices. In contrast, BP+LSD necessitates costly matrix inversion,
and BPGD requires multiple serial iterations. Furthermore, as the
physical error rate increases, the latency of Vegapunk grows signif-
icantly slower than that of BPLSD and BPGD. This is because the
latency of Vegapunk is mainly determined by the sparsity of the de-
coupled matrices and the maximum number of iterations M, making
it less sensitive to the physical error rate. Figure 14 (b) presents the
accuracy threshold of three decoders. Vegapunk realizes average
improvements of 2.53× and 7.11× compared to BP+LSD and BPGD,
respectively. The higher accuracy threshold of Vegapunk stems
from its offline decoupling strategy, which significantly reduces the
search space for greedy guessing, thereby enhancing precision.

10
3

Physical Error Rate

10
2

10
3

10
4

La
te

nc
y

(
s)

(a)
6 1012 18 24

Code Distance

0.1

0.2

Th
re

sh
ol

d
(%

)

(b)

BP+LSD BPGD Ours

Figure 14: Comparison with BP+LSD [22] and BPGD [48], in
terms of (a) decoding latency at different physical error rates
and (b) accuracy threshold at varying BB codes.

7 Related Work
Belief Propagation (BP) [34] is one of the most widely used decod-
ing algorithms for qLDPC codes due to its low complexity, but it
suffers from convergence issues caused by quantum degeneracy
[35, 36]. Various methods have been proposed to enhance the BP
process, including neural BP [30], adaptive BP with memory [27],
generalized BP [32], trapping set dynamics [9], BP guided decima-
tion (BPGD) [48], and symmetry break [50]. However, many of
these methods have been evaluated under simplified noise models
that do not fully capture the complexities of real-world quantum
hardware. Additionally, some of these approaches involve complex
algorithmic structures that are difficult to implement within the
strict time constraints of quantum hardware platforms.

To mitigate the non-convergence issue of BP, Ordered Statistics
Decoding (OSD) [15] has been proposed as a post-process tech-
nique. BP+OSD significantly improves decoding accuracy over BP
by solving a linear system, but it suffers from high latency due to
costly operations such as matrix inversion. Several methods have
been proposed to enhance the efficiency of BP+OSD. For example,
BP+GDG [21] introduces a sliding window decoder based on BPGD
under circuit-level noise. AC [45] divides the syndrome data into
clusters that can be decoded independently and achieves a latency
of 135𝜇𝑠 per round when decoding the 144-qubit Gross code. How-
ever, despite these advances, these decoders still fail to meet the
real-time requirement of superconducting platforms (1𝜇𝑠), even
though they achieve accuracy comparable to BP+OSD.

8 Conclusion
In this paper, we propose Vegapunk, a software-hardware co-design
framework that enables accurate and real-time decoding of qLDPC
codes. We introduce an offline SMT-optimized decoupling strategy
and an online hierarchical decoding algorithm to address the trade-
off between decoding accuracy and latency. We further design a
dedicated accelerator to efficiently exploit the sparsity and paral-
lelism of our decoding algorithm. Experimental results show that
Vegapunk achieves real-time decoding within 1𝜇𝑠 for BB codes up
to [[784, 24, 24]] with logical error rates comparable to BP+OSD.

Acknowledgments
This work was supported by the National Natural Science Founda-
tion of China (No.62472374) and the Zhejiang Provincial Natural
Science Foundation of China under Grant (No.LR25F020002).

MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea Kaiwen Zhou, Liqiang Lu, Debin Xiang, et al.

References
[1] 2023. Suppressing quantum errors by scaling a surface code logical qubit. Nature

614, 7949 (2023), 676–681.
[2] Google Quantum AI et al. 2024. Quantum error correction below the surface

code threshold. Nature 638, 8052 (2024), 920.
[3] Narges Alavisamani, Suhas Vittal, Ramin Ayanzadeh, Poulami Das, and Moin-

uddin Qureshi. 2024. Promatch: Extending the Reach of Real-Time Quantum
Error Correction with Adaptive Predecoding. In Proceedings of the 29th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 3. 818–833.

[4] Elwyn Berlekamp, Robert McEliece, and Henk Van Tilborg. 2003. On the inher-
ent intractability of certain coding problems (corresp.). IEEE Transactions on
Information theory 24, 3 (2003), 384–386.

[5] Yonatan Bilu and Shlomo Hoory. 2004. On codes from hypergraphs. European
Journal of Combinatorics 25, 3 (2004), 339–354.

[6] Sergey Bravyi, Andrew W Cross, Jay M Gambetta, Dmitri Maslov, Patrick Rall,
and Theodore J Yoder. 2024. High-threshold and low-overhead fault-tolerant
quantum memory. Nature 627, 8005 (2024), 778–782.

[7] Nikolas P Breuckmann and Jens Niklas Eberhardt. 2021. Quantum low-density
parity-check codes. Prx Quantum 2, 4 (2021), 040101.

[8] A Robert Calderbank and Peter W Shor. 1996. Good quantum error-correcting
codes exist. Physical Review A 54, 2 (1996), 1098.

[9] Dimitris Chytas, Michele Pacenti, Nithin Raveendran, Mark F Flanagan, and
Bane Vasić. 2024. Enhanced message-passing decoding of degenerate quantum
codes utilizing trapping set dynamics. IEEE Communications Letters 28, 3 (2024),
444–448.

[10] Gergely Csáji. 2022. On the complexity of stable hypergraph matching, stable
multicommodity flow and related problems. Theoretical Computer Science 931
(2022), 1–16. https://doi.org/10.1016/j.tcs.2022.07.025

[11] Poulami Das, Christopher A Pattison, Srilatha Manne, Douglas M Carmean,
Krysta M Svore, Moinuddin Qureshi, and Nicolas Delfosse. 2022. Afs: Accu-
rate, fast, and scalable error-decoding for fault-tolerant quantum computers. In
2022 IEEE International Symposium on High-Performance Computer Architecture
(HPCA). IEEE, 259–273.

[12] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In
International conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 337–340. https://doi.org/10.1007/978-3-540-78800-3_24

[13] Eric Dennis, Alexei Kitaev, Andrew Landahl, and John Preskill. 2002. Topological
quantum memory. J. Math. Phys. 43, 9 (2002), 4452–4505.

[14] Laird Egan, Dripto M Debroy, Crystal Noel, Andrew Risinger, Daiwei Zhu, Debo-
priyo Biswas, Michael Newman, Muyuan Li, Kenneth R Brown, Marko Cetina,
et al. 2020. Fault-tolerant operation of a quantum error-correction code. arXiv
preprint arXiv:2009.11482 (2020).

[15] Marc PC Fossorier and Shu Lin. 2002. Soft-decision decoding of linear block
codes based on ordered statistics. IEEE Transactions on information Theory 41, 5
(2002), 1379–1396.

[16] Austin G Fowler, Matteo Mariantoni, John M Martinis, and Andrew N Cleland.
2012. Surface codes: Towards practical large-scale quantum computation. Physical
Review A—Atomic, Molecular, and Optical Physics 86, 3 (2012), 032324.

[17] Austin G Fowler, Ashley M Stephens, and Peter Groszkowski. 2009. High-
threshold universal quantum computation on the surface code. Physical Review
A—Atomic, Molecular, and Optical Physics 80, 5 (2009), 052312.

[18] Kosuke Fukui, Akihisa Tomita, Atsushi Okamoto, and Keisuke Fujii. 2018. High-
threshold fault-tolerant quantum computation with analog quantum error cor-
rection. Physical review X 8, 2 (2018), 021054.

[19] Craig Gidney. 2021. Stim: a fast stabilizer circuit simulator. Quantum 5 (2021),
497.

[20] Craig Gidney and Martin Ekerå. 2021. How to factor 2048 bit RSA integers in 8
hours using 20 million noisy qubits. Quantum 5 (2021), 433.

[21] Anqi Gong, Sebastian Cammerer, and Joseph M Renes. 2024. Toward low-latency
iterative decoding of QLDPC codes under circuit-level noise. arXiv preprint
arXiv:2403.18901 (2024).

[22] Timo Hillmann, Lucas Berent, Armanda O Quintavalle, Jens Eisert, Robert
Wille, and Joschka Roffe. 2024. Localized statistics decoding: A parallel de-
coding algorithm for quantum low-density parity-check codes. arXiv preprint
arXiv:2406.18655 (2024).

[23] Adam Holmes, Mohammad Reza Jokar, Ghasem Pasandi, Yongshan Ding, Mas-
soud Pedram, and Frederic T Chong. 2020. NISQ+: Boosting quantum computing
power by approximating quantum error correction. In 2020 ACM/IEEE 47th annual
international symposium on computer architecture (ISCA). IEEE, 556–569.

[24] Pavithran Iyer and David Poulin. 2015. Hardness of decoding quantum stabilizer
codes. IEEE Transactions on Information Theory 61, 9 (2015), 5209–5223.

[25] Sebastian Krinner, Nathan Lacroix, Ants Remm, Agustin Di Paolo, Elie Genois,
Catherine Leroux, Christoph Hellings, Stefania Lazar, Francois Swiadek, Johannes
Herrmann, et al. 2022. Realizing repeated quantum error correction in a distance-
three surface code. Nature 605, 7911 (2022), 669–674.

[26] Frank R Kschischang, Brendan J Frey, and H-A Loeliger. 2002. Factor graphs and
the sum-product algorithm. IEEE Transactions on information theory 47, 2 (2002),
498–519.

[27] Kao-Yueh Kuo and Ching-Yi Lai. 2022. Exploiting degeneracy in belief propaga-
tion decoding of quantum codes. npj Quantum Information 8, 1 (2022), 111.

[28] Chia-Kai Liang, Chao-Chung Cheng, Yen-Chieh Lai, Liang-Gee Chen, and
Homer H Chen. 2011. Hardware-efficient belief propagation. IEEE Transac-
tions on Circuits and Systems for Video Technology 21, 5 (2011), 525–537.

[29] Daniel Litinski. 2019. A game of surface codes: Large-scale quantum computing
with lattice surgery. Quantum 3 (2019), 128.

[30] Ye-Hua Liu and David Poulin. 2019. Neural belief-propagation decoders for
quantum error-correcting codes. Physical review letters 122, 20 (2019), 200501.

[31] Mohammadreza Noormandipour and Tobias Haug. 2024. MaxSAT decoders for
arbitrary CSS codes. arXiv preprint arXiv:2410.01673 (2024).

[32] Josias Old and Manuel Rispler. 2023. Generalized belief propagation algorithms
for decoding of surface codes. Quantum 7 (2023), 1037.

[33] Pavel Panteleev and Gleb Kalachev. 2021. Degenerate quantum LDPC codes with
good finite length performance. Quantum 5 (2021), 585.

[34] Judea Pearl. 2022. Reverend Bayes on inference engines: A distributed hierarchical
approach. In Probabilistic and causal inference: the works of Judea Pearl. 129–138.

[35] David Poulin and Yeojin Chung. 2008. On the iterative decoding of sparse
quantum codes. arXiv preprint arXiv:0801.1241 (2008).

[36] Nithin Raveendran and Bane Vasić. 2021. Trapping sets of quantum LDPC codes.
Quantum 5 (2021), 562.

[37] Gokul Subramanian Ravi, Jonathan M Baker, Arash Fayyazi, Sophia Fuhui Lin,
Ali Javadi-Abhari, Massoud Pedram, and Frederic T Chong. 2023. Better than
worst-case decoding for quantum error correction. In Proceedings of the 28th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2. 88–102.

[38] Joschka Roffe, David R White, Simon Burton, and Earl Campbell. 2020. Decoding
across the quantum low-density parity-check code landscape. Physical Review
Research 2, 4 (2020), 043423.

[39] Joschka Roffe, David R White, Simon Burton, and Earl Campbell. 2020. Decoding
across the quantum low-density parity-check code landscape. Physical Review
Research 2, 4 (2020), 043423.

[40] Peter W Shor. 1995. Scheme for reducing decoherence in quantum computer
memory. Physical review A 52, 4 (1995), R2493.

[41] Barbara M Terhal. 2015. Quantum error correction for quantum memories.
Reviews of Modern Physics 87, 2 (2015), 307–346.

[42] Javier Valls, Francisco Garcia-Herrero, Nithin Raveendran, and Bane Vasić. 2021.
Syndrome-based min-sum vs OSD-0 decoders: FPGA implementation and analy-
sis for quantum LDPC codes. IEEE Access 9 (2021), 138734–138743.

[43] Suhas Vittal, Poulami Das, and Moinuddin Qureshi. 2023. Astrea: Accurate
quantum error-decoding via practical minimum-weight perfect-matching. In
Proceedings of the 50th Annual International Symposium on Computer Architecture.
1–16.

[44] Suhas Vittal, Ali Javadi-Abhari, Andrew W Cross, Lev S Bishop, and Moinuddin
Qureshi. 2024. Flag-Proxy Networks: Overcoming the Architectural, Schedul-
ing and Decoding Obstacles of Quantum LDPC Codes. In 2024 57th IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE, 718–734.

[45] Stasiu Wolanski and Ben Barber. 2024. Ambiguity Clustering: an accurate and
efficient decoder for qLDPC codes. arXiv preprint arXiv:2406.14527 (2024).

[46] Yue Wu, Namitha Liyanage, and Lin Zhong. 2025. Micro Blossom: Accelerated
Minimum-Weight Perfect Matching Decoding for Quantum Error Correction.
arXiv preprint arXiv:2502.14787 (2025).

[47] Yue Wu and Lin Zhong. 2023. Fusion blossom: Fast mwpm decoders for qec.
In 2023 IEEE International Conference on Quantum Computing and Engineering
(QCE), Vol. 1. IEEE, 928–938.

[48] Hanwen Yao, Waleed Abu Laban, Christian Häger, Alexandre Graell i Amat, and
Henry D Pfister. 2024. Belief propagation decoding of quantum LDPC codes with
guided decimation. In 2024 IEEE International Symposium on Information Theory
(ISIT). IEEE, 2478–2483.

[49] Jonathan S Yedidia, William T Freeman, Yair Weiss, et al. 2003. Understanding
belief propagation and its generalizations. Exploring artificial intelligence in the
new millennium 8, 236–239 (2003), 0018–9448.

[50] Keyi Yin, Xiang Fang, Jixuan Ruan, Hezi Zhang, Dean Tullsen, Andrew Sorn-
borger, Chenxu Liu, Ang Li, Travis Humble, and Yufei Ding. 2024. SymBreak:
Mitigating Quantum Degeneracy Issues in QLDPC Code Decoders by Breaking
Symmetry. arXiv preprint arXiv:2412.02885 (2024).

https://doi.org/10.1016/j.tcs.2022.07.025
https://doi.org/10.1007/978-3-540-78800-3_24

	Abstract
	1 Introduction
	2 Background
	2.1 Quantum Error Correction Process
	2.2 Basics of qLDPC Code
	2.3 qLDPC Decoding
	2.4 BP and BP+OSD Decoder

	3 Motivation
	4 Vegapunk Algorithm
	4.1 Algorithm Workflow
	4.2 Offline SMT-Optimized Decoupling
	4.3 Online Hierarchical Decoding
	4.4 Complexity Analysis

	5 Vegapunk Accelerator
	5.1 Accelerator Dataflow
	5.2 Syndrome Incremental Update Unit
	5.3 Greedy Decoding Core

	6 Evaluation
	6.1 Evaluation Setup
	6.2 Decoding Performance
	6.3 FPGA Utilization
	6.4 Ablation Study
	6.5 Comparison with BP+LSD and BPGD

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

