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Abstract
Quantum feedback makes the execution of dynamic quantum cir-
cuits possible and is widely used in quantum algorithms. However,
due to the inherent computation and transmission cost, the latency
of the quantum feedback becomes a considerable burden on the
current quantum algorithm. The dynamic property of the feedback
also makes the gates blocked until the feedback is finished. In this
paper, we propose ARTERY, which uses branch prediction to sup-
port instruction pre-execution and speed up the feedback. ARTERY
integrates historical statistics of branches and a real-time readout
pulse analysis to predict the branch. With this idea, we build up a
reconciled branch predictor that concatenates the historical statis-
tics of branches and a real-time branch circuit speculation obtained
from the readout-pulse trajectory predictor. We further explore
the implementation of peripheral hardware for feedback, including
a scalable inter-FPGA connection via the backplane, a feedback
trigger mechanism for dynamic instruction timing, and an adaptive
pulse sampling technique to maximize the hardware bandwidth.
ARTERY accelerates quantum feedback process by 2.07× compared
to the state-of-the-art method, with over 90% prediction accuracy,
achieving 1.24× fidelity improvement.

CCS Concepts
• Hardware→ Quantum technologies; • Computer systems
organization→ Real-time system architecture.
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1 Introduction
Quantum feedback is necessary for many quantum algorithms,
such as fast reset [46, 74], quantum state teleportation [50], and
quantum error correction [10]. These algorithms utilize the ability
of feedback to dynamically change the operations in the quantum
program based on the mid-measurement result, which improves
the flexibility of the program [65]. Feedback is a key component in
error correction, usually taking more than 70% of time for readout
and qubit repair [28, 42, 47, 52]. Since qubits rely on correction
to mitigate error in the current noisy hardware [1, 11, 12, 19, 43,
59, 64, 66], feedback will frequently occur on in future quantum
applications.

However, similar to conditional judgment in classical CPU feed-
back, quantum feedback entails an extremely high computational
overhead in quantum programs. Moreover, since gates after the
feedback are non-deterministic, the computation is blocked at the
feedback, which further increases the latency. Specifically, the feed-
back is implemented via a readout on the quantum processor, fol-
lowed by classical processing on the FPGA boards that determines
the subsequent quantum operations. The readout and reset with
classical processing require 500 ns and 160 ns in Google’s quantum
error correction experiment [42], individually. The total latency is
26.4 times longer than a single gate operation. During this long
feedback period, qubits are exposed to various sources of error,
leading to a high error rate. For example, on Sycamore hardware,
feedback incurs an error rate of more than 2%. Such an error rate is
far above the threshold for quantum error correction, resulting in a
significant correction overhead.

Hardware-level optimization on quantum processors or periph-
eral hardware has been applied to speed up the feedback [9, 14, 16,
48, 61, 67, 68, 70, 71, 73]. Nevertheless, they are limited by hardware-
imposed lower bounds in the readout and classical processing. For
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readout, the latency is constrained by the required qubit lifetime,
which, if reduced, would lower overall computational accuracy
[15, 18, 22, 67]. For example, Walter et al. [67] achieve an 88 ns read-
out latency by optimizing the chip fabrication. Further reducing
the readout latency requires an increase in the coupling strength
between the readout resonator and the qubit, which exposes qubits
to the external environment and therefore reduces the qubit life-
time (i.e., T1) [21]. For classical processing, prior works [7, 8, 62, 71]
accelerate the state classification and pulse preparation on the FPGA
through parallelism [71] and caching techniques [7, 8, 62]. How-
ever, the processing unit (i.e., state classifier, ADC, and DAC) in the
FPGA has an inherent latency due to clock frequency and essential
calculations, resulting in a minimum overall latency of 150 ns [20].

Although quantum feedback faces the latency wall, a key tech-
nique is to exploit branch prediction (BP), an essential component of
CPUs, for quantum feedback. A typical BP mechanism predicts the
most likely branch and pre-execute instructions under this branch.
It can significantly reduce pipeline stalls for successful speculations.
However, for unsuccessful predictions, the CPU incurs additional
instructions to recover the computation. The effectiveness of BP
is largely determined by the accuracy of the prediction. However,
the classical BP methodologies [6, 35, 49, 53] can not be directly
applied to quantum workloads for two reasons, necessitating a new
quantum BP design. First, qubits can stay in the superposition state,
exhibiting higher randomness in the readout, while classical BP is
designed for deterministic outcomes. For example, when measuring
a qubit state with a 50% probability of |0⟩ and a 50% probability of
|1⟩, adopting deterministic speculation provides no benefit. Second,
the quantum readout is a long, continuous process, providing inter-
mediate readout results for prediction, while classical estimations
are discrete and cannot utilize this information.

In this paper, we propose ARTERY, a BP design for quantum
feedback, including a fast quantum speculation methodology and a
physical design that optimizes the synchronization and scalability
of the classical feedback hardware. We first introduce a BP mecha-
nism for quantum feedback, which consists of rules for identifying
the pre-executable instructions and the recovery strategy for incor-
rect predictions. Then, we present our speculation methodology,
which combines the historical results of prior shots and a dynamic
trajectory classifier to estimate the probability of choosing each
branch in the early stages of feedback. When the prediction prob-
ability reaches a confidence threshold, the program pre-executes
gates to eliminate the blocking. Our prediction achieves an accuracy
of more than 90%, benchmarked by current quantum algorithms.

In the physical implementation, we design a hardware architec-
ture for fast feedback based on ARTERY, including hardware units
for state classification and pulse preparation. Three optimizations
are introduced to improve the synchronization and scalability. First,
we develop a hardware interconnection scheme employing hierar-
chical communication, which shortens the critical path for feedback
signal transmission. Second, to reduce the idle time for unit commu-
nication, we design a timing control scheme with feedback triggers
to orchestrate the units. Third, we implement an on-chip pulse
sampling method to alleviate bandwidth pressure and maximize
the integration density of DAC channels on a single FPGA. The
contributions of this paper are summarized as follows:

q1
controlled Xq2

state classification

demodulator

state classifier
FPGA

readout0μs 2μs 0.03μs

AXI bus AXI bus

pulse preparation
decider

memory

buffer buffer

timing
controller

transmit
feedback
signal

ADC ADC ADC DAC

if else

X

feedback controller

H

H

ADC ADC ADC

quantum circuit

Figure 1: Basic architecture of quantum feedback.

• We propose a fast quantum feedback mechanism using branch
prediction, which addresses the inherent latency limitations of
current quantum hardware, thereby benefiting various quantum
algorithms, such as quantum error correction and fast reset.

• We propose the first branch prediction method specifically for
quantum programs. Using historical results and dynamic qubit
trajectories, achieving over 90% accuracy.

• We propose a set of hardware-level optimization methods, in-
cluding an adaptive timing control method, a hardware inter-
connection scheme, and adaptive pulse sampling to enhance the
synchronization and scalability of the feedback system.

Experiments suggest that ARTERY achieves 2.07× acceleration in
feedback compared to the state-of-the-art feedback method [20],
driving the average latency from 2.15 𝜇s to 1.04 𝜇s, achieving 1.24×
fidelity improvement.

2 Background
2.1 Quantum Feedback Architecture
Figure 1 shows the typical quantum feedback on quantum devices
with two stages. First, a qubit is read. Second, the readout infor-
mation is sent to a classical feedback controller, which classifies
the qubit state and determines the branch 0 or 1 of the quantum
program based on the qubit state. The physical implementation
of this paper is based on the superconducting quantum hardware.
However, the mechanism of ARTERY can be generalized to other
physical implementations, such as the neutral atom [69], and the
trapped-ion hardware [5, 30, 37].

Figure 1 presents the architecture of the classical feedback con-
troller to perform branching. It includes ADC modules to capture
the pulse form qubits as readout information. The information is
processed by an FPGA, which contains two key units. The state clas-
sification unit demodulates the pulse and classifies the qubit state.
The pulse preparation reads the pulse data of the chosen branch
from the memory. The pulses pass through a timing controller for
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Figure 2: Latency breakdown of quantum feedback.

synchronization and to the buffer, which are then sent by DAC to
the quantum processor.

2.2 Breakdown of Quantum Feedback
Figure 2 presents the breakdown of latency in the feedback, suggest-
ing a 660 ns latency wall according to current quantum hardware.
Specifically, for the quantum processor, reducing the readout la-
tency requires increasing the coupling strength between the readout
resonator and the qubit, which also decreases the qubit lifetime (i.e.,
T1). The left part of Figure 2 presents the relation between the
lifetime and the readout latency on different quantum processor
designs [41, 42, 67]. For example, Walter et al. [67] achieves the
smallest readout latency of 88 ns, while it also has the smallest
lifetime of 7.6 𝜇s. To ensure a useful lifetime, the minimum readout
latency is limited to 500 ns by Google [42]. On the other hand, the
current feedback controller involves ADC processing, state classi-
fication, pulse preparation, and DAC processing, as shown in the
right part of Figure 2. Each has a minimum latency of 44 ns, 24 ns,
36 ns, and 56 ns, respectively. This overall leads to the latency wall
of 660 ns (500 ns of readout + 160 ns of feedback hardware), which
can hardly be optimized by hardware-level optimization. Moreover,
under the current sequential feedback mechanism, we can observe
that the state-of-the-art feedback controller [20] is close to the
minimum latency, showing a small optimization space.

3 Overview
ARTERY speeds up the feedback by pre-executing the quantum
gates with a new branch prediction algorithm. Figure 3 (a) presents
the workflow of ARTERY. Given a quantum circuit, ARTERY first
identifies available feedback, allowing instruction pre-execution.
It then proceeds to program execution. During the readout of the
feedback, ARTERY iteratively analyzes the probabilities of branches
based on the historical branches in prior shots. When the proba-
bility of a branch exceeds a threshold 𝜃 , ARTERY pre-executes the
quantum gates of these branches. When the readout is finished,
ARTERY knows the correctness of the prediction. If the prediction
is incorrect, a recovery is required. Specifically, since quantum cir-
cuits are reversible, ARTERY applies the reversed quantum gates to
cancel the pre-executed gates and then execute the correct branch.
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Figure 3: Overview of ARTERY.

According to the quantummechanism, all the quantum gates can
be pre-executed. We summarize gate pre-execution in the following
situations, shown in Figure 3 (b):
(1) In case 1, before the X gate on 𝑞2, there are no other gates

or readouts. And the X gate, therefore, can be pre-executed.
This situation frequently appears in applying correction gates
on the data qubit in feedback-based quantum error correction
such as magic state injection (construction of logic T gate)
[17, 23]. It also appears in quantum state transfer such as remote
entanglement gates construction [4].

(2) In case 2, the feedback gates involve two-qubit gates that rely
on the operation of the read qubit, 𝑞1. It cannot be simply
pre-executed on 𝑞1 as the read qubit is occupied by the read-
out operation. However, an ancillary qubit 𝑞′1 will help. After
readout, 𝑞1 will collapse to classical states, which can be pre-
prepared on 𝑞′1, then the rest of the gates operated on 𝑞1 can
be pre-executed on 𝑞′1. By the way, 𝑞1 can be recycled after
the readout operation is completed, thereby minimizing qubit
resource waste to the greatest extent.

(3) In case 3, for scenarios where feedback must operate on the
read qubit, such as qubit reset [74], we must wait for the com-
pletion of the reading process before applying the feedback
gate. In contrast to traditional methods, we can employ predic-
tion techniques to apply the feedback gate at the end of the
readout operation, thereby eliminating hardware processing
latency, which exceeds 100 ns.

(4) In case 4, if the feedback operation is readouts on another
qubit 𝑞2, we cannot apply pre-execution as the readout is not
reversible. Once a prediction error occurs, it is unrealistic to
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recover the state of 𝑞2, as 𝑞2 has already collapsed to a classical
state due to the readout operation.

Gate pre-execution essentially involves altering the temporal
ordering of operations within the directed acyclic graph (DAG)
of the quantum circuit. These four cases essentially represent a
DAG constraint analysis for quantum feedback pre-execution. For
example, in case 1, the feedback operation on Q2 is independent
and unconstrained, and the error state recovery process under the
assumption of dynamic circuit execution is also unconstrained, al-
lowing execution in advance. Cases 2 and 3, however, are subject to
the same constraint, i.e., operations cannot be performed on a busy
qubit, and thus quantum gates must be pre-executed on auxiliary
qubits to transition to a valid state. Cases 1-3 encompass almost all
quantum feedback situations, allowing branch prediction to accel-
erate the majority of feedback applications. Case 4 is constrained
by the "irreversibility of readout" logic, making it impossible to
recover the state prior to prediction, and therefore, quantum gates
cannot be executed in advance.

Real-time feedback and Pauli Frame error correction are orthog-
onal methods in QEC. In the Pauli Frame scheme [45, 57], the
syndrome can benefit from latency reduction through prediction-
based active feedback (Figure 3 (b), case 3). Some studies suggest
that real-time feedback can map data qubits to low-energy state to
prevent error accumulation and error propagation [2, 38], allowing
logical T-gates to be implemented [17, 40]. In this manner, data
qubit can also benefit from pre-correction (Figure 3 (b), case 1). This
case can also apply to the pre-execution of branching circuits for
modern long-distance practical circuits such as quantum random
walk (QRW) [51] and quantum state teleportation (QST) [4, 55]
performed on physical qubits.

Although the readout in the feedback causes quantum collapse to
all qubits, when the readout qubits are entangled with other qubits,
the mathematical foundation of the gate pre-execution lies in the
fact that the Hamiltonian of the readout does not operate on the
pre-executed qubits. When the branch is determined, the operator
of the readout and the subsequent quantum gates commute. In other
words, the order of the readout and branch does not change the final
result. We put specific proofs of it in the Appendix, to prove that the
pre-execution operation is equivalent to the feedback operation.

4 Branch Prediction Methodology
As a motivational example, Figure 4 illustrates the readout outcome
statistics of the prior and posterior shots during the execution of a
quantum feedback program, using quantum randomwalk (QRW) as
an example. For any given feedback program, the readout distribu-
tions of the prior and posterior shots follow a very similar pattern,
e.g., (0.42, 0.58), (0.44, 0.56). The figure also displays example read-
out trajectories for prior and posterior shots. Larger points indicate
later times. The data corresponds to a readout pulse of 2000 ns, with
IQ coordinates calculated every 400 ns. The figure shows that the
trajectory for |0⟩ generally trends toward the |0⟩ center of the fixed
coordinate for most of the time period, while the trajectory for |1⟩
follows a similar pattern. The figure presents statistical trajectory
states, revealing repeated patterns in both prior and posterior shots,
with similar frequency distributions. This observation allows us to
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Figure 4: Motivational example for ARTERY.

leverage the frequency of state occurrences to predict the readout
results of subsequent shots, using the following BP method.

ARTERY adopts a branch prediction method inspired by the clas-
sical method. As shown in Figure 6 (a), A classical BP method [54]
uses historical branches to predict the possible branch under the cur-
rent state, which is stored in a state table consisting of< 𝑠𝑡𝑎𝑡𝑒, 𝑏𝑟𝑎𝑛𝑐ℎ >

pairs. 𝑏𝑟𝑎𝑛𝑐ℎ of each state in the state table is the most frequent
branch under this state, which is dynamically updated during the
CPU execution. A feature based on the temporary dependency of
the branches in the CPU is characterized as a current state, which
consists of the recent 𝑘 branches of prior feedback. The prediction
is performed as a table matching to find the most possible direction.
For example, when the recent 2 directions are "1, 1", the state is "11".
For the table with pair < 11, 1 >, the prediction is 1.

However, the branch of the quantum feedback shows higher
randomness due to the quantum superposition state. Besides, BP
on the classical CPU assumes that the branches are temporarily
dependent; we can, therefore, use branches of different programs to
predict the current branch, but the branches of different quantum
programs are independent. ARTERY adopts a combination model
to predict the branch. Specifically, a quantum program usually has
multiple shots. Besides, a readout has two possible outcomes: 0 or 1.
We only need to predict the probability of reading 1, 𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡_1, as
𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡_0 = 1−𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡_1 ARTERY uses two key features to model
the probability for each shot:
(1) the historical branch distribution of this feedback, which in-

cludes the statistical probability of reading 1 (𝑃ℎ𝑖𝑠𝑡𝑜𝑟𝑦_1);
(2) the probability of reading 1 (i.e., 𝑃𝑟𝑒𝑎𝑑_1) at an intermediate

moment of the readout process in the current shot.
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Since readout in the quantum system is a continuous process,
we can estimate 𝑃𝑟𝑒𝑎𝑑_1 at the intermediate time point of this pro-
cess. As shown in Figure 5 (a), on the superconducting quantum
hardware, the readout is implemented with a readout resonator
coupled to the qubit [22, 24]. The state of each qubit is measured by
sending the readout pulses to the readout resonator and identifying
the frequency shift of the pulse, called dispersive shift.

A portion of the readout pulse can differentiate frequency shifts
via I and Q values, with longer pulses offering higher accuracy. At
time point 𝑡𝑖 , the readout controller captures a segment of pulse,
with complex amplitudes 𝑝𝑢𝑙𝑠𝑒 = [𝑎1, 𝑎2, · · · , 𝑎𝐿], where 𝐿 is a
specified window length. The I and Q values are calculated follow-
ing the demodulation equation:

𝐼 =
1

𝐿 + 1

𝐿∑︁
𝑖=1

(𝑎𝑖 .𝑟𝑒𝑎𝑙 · 𝑐𝑜𝑠 (𝜔𝑖) + 𝑎𝑖 .𝑖𝑚𝑎𝑔 · 𝑠𝑖𝑛(𝜔𝑖))

𝑄 =
1

𝐿 + 1

𝐿∑︁
𝑖=1

(𝑎𝑖 .𝑖𝑚𝑎𝑔 · 𝑐𝑜𝑠 (𝜔𝑖) − 𝑎𝑖 .𝑟𝑒𝑎𝑙 · 𝑠𝑖𝑛(𝜔𝑖))

where 𝑎𝑖 .𝑟𝑒𝑎𝑙 and 𝑎𝑖 .𝑖𝑚𝑎𝑔 are the real part and the imaginary part
of the amplitude 𝑎𝑖 , respectively. As presented in Figure 5 (a), I and
Q values of different states (i.e., 0 or 1) are in different clusters in
the IQ plane, which is used to classify the readout outcome. For
example, Figure 5 (b) presents the trajectory of I and Q values at
time points 𝑡0 to 𝑡5.

Since I and Q values at different time points form a trajectory,
the estimation is performed by comparing this trajectory with a
pre-generated table. Specifically, at time point 𝑡𝑖 , we demodulate the
captured readout pulse, obtaining the IQ values. Then, by calculat-
ing the distances between IQ values and the center of 0 or 1, we can
identify the most probable state at this time point. However, there
are noises during the readout, leading to data jitter at the time points.
We record the most probable states of 𝑘 recent time points as a
trajectory and compare this trajectory to a < 𝑡𝑟𝑎 𝑗𝑒𝑐𝑡𝑜𝑟𝑦, 𝑃𝑟𝑒𝑎𝑑_1 >
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table, which records 𝑃𝑟𝑒𝑎𝑑_1 under different trajectories. 𝑘 is a user-
defined parameter determined based on the granularity of the esti-
mation. In addition, the < 𝑠𝑡𝑎𝑡𝑒𝑠, 𝑃𝑟𝑒𝑎𝑑_1 > table is pre-generated
when the quantum hardware is initialized, and the probability in the
state table remains unchanged during the execution of the feedback
program. However, we dynamically update the probabilities among
different quantum feedback programs based on previous execution
results to enhance the accuracy of predictions.

We combine the historical probability and the probability based
on the intermediate readout pulse by a Bayesian model to estimate
the overall probability of the:

𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡_1 =
𝑃ℎ𝑖𝑠𝑡𝑜𝑟𝑦_1 · 𝑃𝑟𝑒𝑎𝑑_1

𝑃ℎ𝑖𝑠𝑡𝑜𝑟𝑦_1·𝑃𝑟𝑒𝑎𝑑_1 + (1 − 𝑃ℎ𝑖𝑠𝑡𝑜𝑟𝑦_1) · (1 − 𝑃𝑟𝑒𝑎𝑑_1)

For example, as shown in Figure 6, the historical probability 𝑃ℎ𝑖𝑠𝑡𝑜𝑟𝑦_1
of using branch 1 is 0.7. The prediction iteratively analyzes the
readout pulse and records the trajectory of possible readout re-
sults. The state is regarded as the recent 3 results, 111. Accord-
ing to the < 𝑠𝑡𝑎𝑡𝑒𝑠, 𝑃𝑟𝑒𝑎𝑑_1 > table, the probability of reading 1
in the current shot is 𝑃𝑟𝑒𝑎𝑑_1 = 0.95. Combining 𝑃ℎ𝑖𝑠𝑡𝑜𝑟𝑦_1 and
𝑃𝑟𝑒𝑎𝑑_1, the overall of predicted probability of using branch 1 is
𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡_1 = 0.7·0.95

0.7·𝑃𝑟𝑒𝑎𝑑_1+(1−0.7) · (1−0.95) = 0.97. Pre-defined proba-
bility thresholds 𝜃0 and 𝜃1 are employed to decide whether to take
gate pre-execution. If 𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡_0 < 𝜃0, the feedback will take branch
0, otherwise branch 1 when 𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡_1 > 𝜃1.

The ARTERY algorithm is fast in implementation and accurate
in the estimation. Clearly, in terms of implementation, updating the
historical outcome distribution is performed after each prediction,
leading to no latency. In 𝑃𝑟𝑒𝑎𝑑_1 estimation, computing the distance
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and the table matching has O(1) complexity. In terms of accuracy,
the prediction uses both the historical outcomes and the current
readout state. Therefore, for feedback with uniform qubit state (50%
0 and 50% 1), the probability can be estimated based on the current
readout state. On the contrary, when the readout has a high error
rate, the accurate estimation is achieved by the historical outcomes.

5 ARTERY Implementation
5.1 Hardware Design
Figure 7 (a) provides an overview of ARTERY’s feedback controller
architecture. In this design, the clock management module gen-
erates the reference clock for the ARTERY system and provides
synchronized clocks for the ADC and DAC modules. The ADC and
DAC modules, responsible for pulse reception and transmission,
are integrated into an add-on card. These chips are connected to
the ARTERY design via serdes for high-speed pulse data transfer.
The ARTERY hardware system connects to the backplate through
the data transceiver, enabling the reception and transmission of
feedback signals from other FPGAs.

As shown in Figure 7 (b), the input pulses are captured by the
ADC core and the digital down converter to obtain low-frequency
pulses. Additionally, the output pulses go through data interpolation
and are then generated into analog pulses by the DAC core. The
digital down converter and interpolation modules are quite time-
consuming, accounting for most of the latency of ADC and DAC
processing. The key processing units of the feedback controller are
arranged as illustrated in Figure 7 (c). The top and the bottom of the
figure represent state classification and pulse preparation modules,
respectively, which are separated by the dynamic timing controller
in the middle.

State classification. The input readout pulse is initially received,
buffered, and then adjusted with a stream width adapter. Subse-
quently, two stream adapters handle the input stream. One gener-
ates the real part of the pulse, while the other handles the imaginary
part. The adapter collects pulse data within the window length

(𝑡1, 𝑡2) and sends it to the demodulator. The pulse is then processed
along with pre-stored parameters for demodulation. The demodu-
lated results are pushed into a demodulation result queue with a
depth of 𝑝𝑢𝑙𝑠𝑒 𝑙𝑒𝑛𝑔𝑡ℎ

𝑤𝑖𝑛𝑑𝑜𝑤 𝑙𝑒𝑛𝑔𝑡ℎ
, providing the IQ coordinates of the pulse.

The branch history registers with a width of 𝑘 records the prelimi-
nary classification of the quantum state at time 𝑡2. Simultaneously,
the register records are synchronized with the readout trajectory
buffer to update the probabilities in the state table as soon as the
readout is finished. Whenever the values in the branch history reg-
ister are updated, 𝑃𝑟𝑒𝑎𝑑 can be obtained via the state table, which
is implemented using BRAM and occupies a max memory size of
2𝑘−3 (𝑘 + 16) Bytes, where 𝑘 is the number of branch registers. The
Bayesian prediction model consists of a multiplier and a FIFO for
storing readout predictions, which outputs the 𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡 after three
cycles. The prediction result is simultaneously sent to the timing
controller for dynamic timing control and to the branch decider to
determine whether it exceeds the pre-set thresholds 𝜃0 or 𝜃1.

Pulse Preparation. The branch decider is designed to analyze
branch signals and prefetch quantum gate instructions from the
operation table. The pulse library, implemented as a lookup table,
stores pre-encoded pulses for branch circuits. Upon querying the
library using an address, the pulses are retrieved and sent to the
decoder. The decoded pulse is then transmitted to the DACs via the
JESD interface, completing a full feedback cycle.

Additionally, for inter-FPGA feedback signals, transmission oc-
curs through the predictor-interconnection-data transceiver-backplate
pathway. This process also incorporates trigger signals issued by
the dynamic timing controller to ensure synchronization of inter-
FPGA communication. This design enables a scalable approach to
branch prediction.

5.2 Scalable Controller Interconnection
Considering the scalability of quantum feedback, the primary issue
lies in maintaining real-time feedback across the entire quantum



ARTERY: Fast Quantum Feedback using Branch Prediction ISCA ’25, June 21–25, 2025, Tokyo, Japan

FPGA1

FPGA2

FPGA3

FPGA4

backplane
(a) Wire connections of 
controllers in the backplane.

(b) Wire connections across the backplanes.

1

2

3

4

Figure 8: Interconnected backplane to speed up the commu-
nication.

chip, where the branch operations are controlled by nearby or far-
away qubits. As shown in Figure 8 (a), the backplane architecture
designed to interconnect multiple FPGA boards supports full con-
nectivity, which features a layered structure, enabling high-speed
point-to-point transmission between FPGAs with non-overlapping
transmission paths within each layer. To ensure sufficient signal
fan-out and enable feedback control between any qubit pair on-chip
while minimizing overall transmission latency, the backplanes are
connected as an efficient routing network for feedback signals.

As illustrated in Figure 8 (b), the transmission is organized into
three levels. The first level handles feedback within the same FPGA,
where signals are transmitted directly with minimal latency. The
second level manages feedback between qubits under the same
backplane, which offers a direct connection between FPGAs. The
third level is activated to deal with feedback across backplanes to
handle the longer-distance feedback. This distributed multi-level
control is the optimal transmission architecture because it priori-
tizes lower-latency paths for most feedback operations, reserving
higher-latency paths for only the most necessary communications.

5.3 Dynamic Timing
Conditional quantum execution. ARTERY employs Bayesian
analysis based on branch prediction, where the timing of branch di-
rection predictions is inherently uncertain. To support the dynamic
execution of branch circuits, the conventional static timing scheme
should be updated to conditional execution with dynamic timing.
Designing an on-chip dynamic timing control scheme is required to
modify timing based on predicted quantum states, allowing for low-
latency execution without misalignment by adjusting execution
windows to minimize idle time for the entire quantum system.

As illustrated in Figure 9 (a), the execution of quantum instruc-
tions typically requires shifting the execution of branch circuit
instructions from being constrained by a fixed time schedule to be-
ing governed by feedback triggers. For example, in static timing, an
𝑅𝑋 ( 𝜋2 ) pulse is executed at a fixed time point, such as 𝑡 = 200𝑑𝑡 . In
contrast, under dynamic timing, instructions are conditionally exe-
cuted: upon receiving a feedback trigger, the controller immediately
issues the RX pulse for execution.

Feedback trigger. The Figure 9 (b) illustrates the working strat-
egy of the feedback trigger. At time 𝑡0, the Bayesian predictor gener-
ates a probability prediction 𝑃predict_1, which is below the threshold
𝜃1. As a result, the dynamic timing controller does not issue the
feedback trigger, and the branch circuit remains inactive. After a

Wait 200
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Wait for feedback trigger
Pulse{q1} RX(   )

0
t = 200dt trigger

Bayesian
predictor

feedback
decider

(same FPGA)
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P predict_1 < 

from static
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P predict_1 > 
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t0 t1

feedback trigger

pre-execution

pre-execution by remote trigger

(a) Comparison of static and dynamic timing controls.

(b) Sequence diagram of the feedback trigger.

q1 q1

Figure 9: Feedback trigger mechanism to enable dynamic
timing control.

time window of length 𝐿, at 𝑡1, the Bayesian predictor updates its
prediction, which now exceeds the threshold 𝜃1, meeting the condi-
tions for executing the branch circuit. Consequently, the dynamic
timing controller issues a feedback trigger. If the feedback process
is executed on the same FPGA, the feedback decider initiates the
branch circuit execution immediately upon receiving the feedback
trigger. In the case of inter-FPGA feedback, the feedback trigger
is transmitted through the backplane to the feedback decider on a
different FPGA. Upon receiving the remote trigger, the other FPGA
proceeds with the pre-execution of the branch circuit.

5.4 Adaptive Pulse Sampling
The signal transmission speed between DAC and ADC within an
FPGA is significantly faster compared to the transmission between
FPGAs via serdes (e.g. 4𝑛𝑠 vs. 48𝑛𝑠). However, the number of DACs
and ADCs that can be connected with a single FPGA is limited
due to Advanced Extensible Interface (AXI) bandwidth constraints.
Quantum pulses usually contain a large number of ’0’ signals for
idle operation and are easy to compress [32]. To address this, the
ARTERY design incorporates an adaptive sampling rate method
that optimizes on-chip bandwidth usage. By dynamically adjusting
the sampling rate based on compressed pulses, the design reduces
the data transmission load, allowing the maximization of the inte-
gration density of DACs on each FPGA.

When deploying control pulses of the branch circuit, ARTERY
generates high sampling rate analog-to-digital conversion data
through pulse encoding. Before transmitting data to the DAC mod-
ule, a decoding unit is designed to handle the encoded pulses from
the pulse library. As shown in Figure 10, consider an example where
the DAC has a resolution of 16 bits and a sampling rate of 2 GSPS
(2G samples per second). For a basic gate set comprising RX, RY,
RZ, and CZ, the pulse data required for circuit execution includes a
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30 ns XY pulse, a 60 ns CZ pulse, and a 2 𝜇s readout pulse. After
encoding, these pulses are stored in the pulse library. When the
decider receives a feedback trigger, it retrieves the required pre-
encoded pulses from the pulse library. The pulse stream is then
transmitted over the AXI bus and sent to the decoder for process-
ing. The decoder utilizes a combination of run-length decoding
and Huffman decoding. The pulses are first decoded using the run-
length decoder, and then the original pulses are reconstructed using
the Huffman table. Once decoded, the pulse is converted back to
its original form and adjusted to the required DAC sampling rate.
Finally, the decoded pulses are sent to the DAC modules for further
processing and conversion into analog signals, ensuring more inte-
gration density of DACs on each FPGA under the same transmission
bandwidth.

6 Evaluation
6.1 Experiment Setup
Platforms. We use a self-developed quantum processor with 18
Xmon-qubits, arranged in 3×6 grid topology. The qubit relaxation
time (T1) ranges from 110𝜇𝑠 to 140𝜇𝑠 . The basis gates of the device
are RX, RY, RZ, and CZ gates, where RZ gates are implemented
as virtual gates [33]. The single-qubit gates, two-qubit gates, and
readout are calibrated to reach the fidelities of 99.94%, 99.7%, and
99.0%, respectively. The calibrated parameter set of pulses to reach
the best fidelity are recorded for pulse generation with ARTERY. 3
qubits share the same readout line using frequency-multiplexing.
The duration of the readout pulse is 2𝜇𝑠 for all of the qubits. We
collect the readout pulses and branch results on this quantum device
to perform evaluation. The dataset contains 4,000 readout pulses
and the corresponding readout pulses. For each benchmark, we set
1, 000 sequences as training datasets for parameter training and the
other for latency testing.

Configurations of ARTERY feedback controller.We simu-
late the hardware controller with an FPGA carrying 16 DACs and 4
ADCs. We set Xilinx Zynq MPSOC xczu15eg-ffvb1156-2-i and
xczu9eg-ffvb1156-2-i as the backend FPGAs connected with
AD9164, AD9680 from Analog Devices as the backend DACs and
ADCs, programmed by High-level Synthesis (HLS) and Verilog. The
FPGA operates at 250MHz, and the interpolation of DAC is set to
2×, with a numerically controlled oscillator bypassed. We set the
default window length in the demodulation to 30 ns for readout
pulse demodulation. The default number of branch history regis-
ters is set to 6. The communication latency through serdes among
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Figure 11: Example of QEC circuit.

FPGAs is 48 ns. The DAC sampling rate is set to 4 GSPS, with the
ADC sampling rate fixed to 1 GSPS.

Software configurations. All programs are implemented with
Python (3.9.13) and the Numpy package (1.23.1). We use Qiskit
to simulate the noisy execution results. We also use Pymatching
package to pre-generate a lookup table for decoding. All software
experiments are performed on an AMD EPYC 2.25GHz 64-core CPU
with 1TB of memory.

Baseline. We compare ARTERY against state-of-the-art feed-
back acceleration approaches, including QubiC [20] (implemented
similarly on Google Sycamore [42]), HERQULES [31] (implemented
with feedback, and the window length is set to 30 ns), Salathe et al.
[48], and Reuer et al. [44].

Benchmark. The evaluation is performed on 6 algorithms, in-
cluding the quantum error correction (QEC) [10] with surface code,
quantum random walk (QRW) [51], quantum remote CNOT gate
construction (RCNOT) [4], deterministic quantum teleportation
[55], repeat-until-success based quantum neural network (RUS-
QNN) [36] and active qubit reset [46, 74]. We use the QEC circuit
in [10] with a code distance of 3, which is repeated in 1 to 30 cy-
cles. For the QRW circuit, we evaluate a two-qubit circuit ranging
from 1 to 25 steps. The physical distances of the RCNOT circuit
and DQT circuit are both set to 1-6. The RUS-QNN circuit is set
to repeat, ranging from 1 to 6 cycles. The reset operation is set to
be performed on 1-25 qubits simultaneously. We also build a set
of random benchmarking circuits, where we randomly add 25-150
gates before and after the feedback operation. Except for the QEC
experiment, where the initial state is set to |0⟩, |+⟩ and |1⟩, all other
benchmarks adopt random initial states to ensure high accuracy.

6.2 Example: quantum error correction
Figure 11 (a) illustrates the surface code scheme used for valida-
tion (distance = 3), where the black circles represent data qubits
and the red circles represent syndromes. Figure 11 (b) shows the
execution of the QEC circuit integrated with ARTERY, where 𝑠𝑞𝑖
refers to the syndrome and 𝑑𝑞𝑘 refers to a data qubit. In each cycle,
the syndrome’s readout uses branch prediction to acquire readout
results. Once ARTERY obtains all results from syndromes, they are
decoded by a real-time decoder, and a pre-correction operation is
executed. Next, ARTERY applies an X gate on the data qubit (𝑑𝑞𝑘 ) to
flip the physical qubit before the syndrome readout is finished. As
soon as the syndrome readout concludes, the pre-reset is performed
based on the prior prediction, eliminating the need to wait for the
hardware processing. If the previous prediction of the data qubit
is correct, the program immediately proceeds to the next cycle.
Otherwise, recovery is performed on the data qubit (via a second X



ARTERY: Fast Quantum Feedback using Branch Prediction ISCA ’25, June 21–25, 2025, Tokyo, Japan

QubiC[20] HERQULES[31] Salathe et al.[48] Reuer et al.[44] ARTERY

la
te

nc
y 

(μ
s)

0

20

40

60

80

1 5 10 15 20 25 30 #cycle
(a) Evaluation of feedback latency at d=3.

(b) Evaluation of logical error rate at d=3.

0

10

20

30

40

50

1 5 10 15 20 25 30 #cycle

lo
gi

ca
l e

rr
or

 ra
te

 (%
)

(c) Comparison of logical error rate.

lo
gi

ca
l e

rr
or

 ra
te

 (%
)

#cycle

ARTERYGoogle[42]

(d) Speculation benefit estimation.

sa
ve

d 
la

te
nc

y 
(n

s)



#d

-40

0

40

80

120

160

3 5 7 9 11 13
15 17 19

upper bound

ARTERY

0

10

20

30

40

50

0 5 10 15 20 25 30

Figure 12: Evaluation of feedback latency and fidelity of QEC.

gate on 𝑑𝑞𝑘 ), followed by the proper operation (a final Z gate on
𝑑𝑞𝑘 ).

Figure 12 (a) presents the evaluation of the FPGA feedback la-
tency of data qubit correction in the QEC circuit. Overall, ARTERY
achieves 4.80× speedup in feedback compared to the state-of-the-
art method QubiC [20] (used in Google’s hardware). As for active
reset for syndromes, ARTERY achieves 1.08× faster than QubiC,
driving 2.16 𝜇s to 2.01 𝜇s of latency. Considering that 2 𝜇s of the
2.01 𝜇s feedback latency are dedicated to the readout, this result
demonstrates that the reset operation begins almost immediately
after the readout is completed, thereby allowing more time for gate
execution. Additionally, the latency of the QEC cycle depends on
the syndrome readout and reset. ARTERY achieves a 1.06× acceler-
ation in end-to-end latency for each cycle, reducing it from 2.45 𝜇s
to 2.31 𝜇s. This acceleration is achieved with the readout latency
of 2 𝜇s; with faster readouts, the acceleration ratio could be even
greater.

As for the simulation of logical errors, since packages like Stim
do not support feedback operations and dynamic circuit configura-
tions, we use Qiskit to construct and simulate a noisy d=3 surface
code circuit (including T1, T2, single-qubit gates, two-qubit gates,
and readout errors, with parameters consistent with Google [42]).
We then construct a dynamic circuit using latency results obtained
from ARTERY. Due to limitations in Qiskit’s syntax for feedback
operations, we replace the real-time decoder with a lookup table, re-
taining only the feedback operations. To better align with practical
experimental requirements, we executed the QEC circuit with 500
repetitions. Figure 12 (b) shows the logical error rate of the circuit
under different cycles, with dynamical decoupling [13] added on
idle qubits. Compared to QubiC [20], ARTERY achieves a 1.86×

reduction in logical error rate. This is due to the fast reset of the
syndrome, which reduces the overall cycle latency, while the data
qubits, being in a low-energy state due to pre-correction, reduce
decoherence errors. It decreases physical qubit errors and therefore
improves logical qubit error rates.

Figure 12 (c) compares the logical error rate result in the sur-
face code with d=3 between the noise environment simulation of
ARTERY and the state-of-the-art Google’s real-world QEC demon-
stration experiment [42]. ARTERY achieves up to 2.02× improve-
ment in the logical error rate, with a logical error rate of only
22.1% at cycle=25, which is lower than Google’s 44.6%. Furthermore,
compared to Google’s demonstration, the error rate of ARTERY
increases more gradually with the number of cycles.

By sampling from the existing syndrome prediction accuracy,
we develop a latency error estimation model for larger code dis-
tances. In the estimation, any prediction error in a syndrome trig-
gers branch recovery. We estimate the upper bound of ARTERY’s
benefit in latency reduction for larger code distances. Figure 12
(d) shows the syndrome feedback time saved by ARTERY at each
cycle for different code distances. For d=13, ARTERY reaches its
upper bound. Although ARTERY can predict the readout results
in advance and operate alongside the decoder pipeline, the cost of
recovery for wrong predictions limits its effectiveness. For circuits
with d>13, the cost of prediction errors will overwhelm the bene-
fits of pre-execution, and ARTERY does not contribute to latency
reduction under the current prediction accuracy.

6.3 Evaluation of Feedback Latency
Table 1 presents the average feedback latency performance of
ARTERY and other baselines. Overall, ARTERY achieves 2.07× ac-
celeration in feedback latency compared to the state-of-the-art
method (QubiC [20]). ARTERY drives the average feedback latency
from 2.15 𝜇s to 1.04 𝜇s. The significant acceleration in feedback
latency comes from branch prediction and circuit pre-execution,
while other feedback methods still wait for readout and hardware
processing.

As shown in Table 1, the feedback latency of different methods
increases linearly with the number of feedback iterations. There-
fore, the more feedback cycles included in the circuit, the more
execution time ARTERY can save. Additionally, we observe that
ARTERY feedback latency differs in algorithms. For instance, the
average feedback latency in the RCNOT circuit is only 0.93 𝜇s, while
in the QRW circuit, it can be 1.23 𝜇s. This significant difference is
attributed to the varying historical readout probabilities. For ex-
ample, in QEC, the probability distribution of historical readouts
is highly imbalanced, with 𝑃ℎ𝑖𝑠𝑡𝑜𝑟𝑦_1 being below 1%. Such a prior
probability allows the predictor to output 𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡_1 exceeding the
tolerance threshold 𝜃1 shortly after receiving the readout pulse, en-
abling early branch pre-execution. However, the prior probabilities
in the QRW circuit are more random, requiring the analysis of a
longer readout pulse before predicting and executing the branch
circuit, resulting in a longer feedback latency.

Figure 14 (a) summarizes the average feedback latency when
relying solely on historical data versus readout pulse analysis. For
the QEC algorithm, using only historical data achieves a prediction
accuracy of 0.972 with an average latency of 0.386 𝜇s. In contrast,
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Table 1: Evaluation of feedback latency (𝜇s).

QRW [51] (#step) RCNOT [4] (#depth) RUS - QNN [36] (#cycle) DQT [55] (#distance) reset [46, 74] Random (#gate)

1 5 15 25 1 2 3 4 1 2 3 4 1 2 3 4 - 25 50 75 100

QubiC [20] 2.15 10.78 33.26 52.90 2.14 4.36 6.47 8.68 2.14 4.43 6.52 8.77 2.14 4.29 6.51 8.66 2.16 3.12 4.27 5.61 6.62
HERQULES [31] 2.17 10.95 33.96 55.13 2.16 4.39 6.55 8.71 2.17 4.44 6.53 8.69 2.21 4.29 6.54 8.67 2.16 3.16 4.39 5.72 6.69
Salathe et al. [48] 2.12 10.69 33.10 53.40 2.12 4.30 6.42 8.62 2.13 4.31 6.45 8.64 2.11 4.32 6.40 8.59 2.11 3.07 4.18 5.50 6.44
Reuer et al. [44] 2.43 12.15 37.21 64.20 2.40 4.91 7.37 9.86 2.37 4.98 7.36 9.97 2.38 4.86 7.42 9.81 2.38 3.39 4.58 6.01 7.10

ARTERY 1.23 6.12 17.98 29.82 0.93 1.85 2.68 3.39 1.12 2.45 3.69 4.72 1.07 2.20 3.41 4.64 2.01 2.34 3.31 4.06 4.77

(a) Fidelity of QRW circuits. (b) Fidelity of RCNOT circuits. (c) Fidelity of RUS-QNN circuits. (d) Fidelity of reset circuits.(e) Fidelity of DQT circuits.
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Figure 14: Ablation study of techniques.

other algorithms like DQT and RUS-QNN achieve prediction ac-
curacies of only around 0.4 to 0.7, accompanied by significantly
higher latencies. When relying solely on readout pulse analysis,
the prediction accuracies across benchmarks exceed 0.9, but it still
leads to 1.47× longer latency than that of ARTERY. Because of the
pre-execution constraint (Figure 3 (b) case 3) for active reset, the
feedback latency will never be less than 2 𝜇s.

Figure 13 illustrates the fidelity improvement of QRW [51], RC-
NOT [4], RUS-QNN [36], DQT [55] and active reset [46, 74]. Includ-
ing QEC fidelity in Figure 12 (b), overall, ARTERY achieves 1.24×,
1.22×, 1.19× and 1.29× fidelity improvement compared with the
QubiC [20], HERQULES [31], Salathe et al. [48] and Reuer et al. [44].
Due to the shorter feedback latency, ARTERY is less affected by
relaxation noise, and it becomes more beneficial when dealing with
longer circuits. For example, when the QRW circuit reaches the
25th step, the fidelity of the target qubit remains at 80%, whereas
the fidelity of other methods drops below 70%. In the case of the
DQT algorithm, when a circuit with a distance of 6 (i.e., with 6
ancillary qubits is used for quantum state teleportation), ARTERY
achieves a 1.52× improvement in fidelity compared to Salathe et al.
[48]. Moreover, according to Figure 13 (b) and Figure 13 (d), as the
distance of long-distance entanglement increases, ARTERY demon-
strates even more significant improvements in fidelity for the target
qubit than other methods. Considering ARTERY’s shorter latency
and higher fidelity, it proves to be a more efficient approach for
facilitating long-distance quantum entanglement.

6.4 Evaluation of ARTERY Prediction
Figure 15 (a) depicts the prediction accuracy and feedback latency
during the state classification for a depth=10 RCNOT circuit. As
the readout latency increases, the branch prediction accuracy rises
rapidly. At 0.75 𝜇s of the readout pulse, the prediction accuracy
reaches 82.7%, and at 1 𝜇s, it increases to 90.6%. The rapid classifi-
cation is attributed to the branch registers and state tables, which
record the readout trajectory history and provide read probabilities,
enabling the Bayesian model to refine the overall probability and
quickly make accurate branch predictions iteratively. In the latter
half of the readout pulse analysis, the prediction accuracy stabi-
lizes above 95%, allowing for earlier detection of quantum states
compared to a complete readout.

We randomly sample 14 branch prediction results for the feed-
back process of each benchmark. Figure 15 (b) illustrates the accu-
racy distribution of branch predictions for different benchmarks.
As observed, the prediction accuracy for QEC is relatively high,
predominantly around 97.0%, with an average latency of 0.382 𝜇s.
In contrast, QRW and RCNOT exhibit accuracy ranges primarily
between 84.6% and 93.5%, with corresponding average latencies of
1.227 𝜇s and 0.934 𝜇s, respectively. The higher history probability in
QEC enables faster predictions with greater accuracy. On the other
hand, QRW and RCNOT rely more heavily on readout information
compared to QEC, leading to longer feedback latency.

6.5 Evaluation of Controller Implementation
Table 2 illustrates the bandwidth performance of the decoder when
employing three different compression algorithms: Huffman encod-
ing, run-length encoding, and a combined Huffman and run-length
approach across three benchmarks. Compared to the original raw
pulse, all three algorithms achieve significant improvements in
on-chip pulse data transmission bandwidth. Specifically, ARTERY
demonstrates an average 4.7× increase in pulse transmission band-
width using the combined Huffman and run-length encoding, with
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Figure 15: Evaluation of branch prediction accuracy.

Table 2: Evaluation of the adaptive pulse sampling.

Method Raw
pulse Huffman Run-length Huffman &

Run-length

Bandwidth
(𝐺𝑏/𝑠)

QEC 64.0 27.5 11.9 9.9

QRW 64.0 28.8 15.6 13.1

RCNOT 64.0 26.4 14.0 12.2

#DAC / FPGA
QEC 4.0 9.0 21.0 25.0

QRW 4.0 8.0 16.0 19.0

RCNOT 4.0 9.0 18.0 20.0

Latency
(𝑛𝑠)

QEC - 18.9 12.3 20.7

QRW - 16.4 7.6 13.5

RCNOT - 17.2 12.5 14.6

the QEC benchmark achieving up to a 6.2× enhancement. Huff-
man encoding and run-length encoding individually yield average
bandwidth optimizations of 4.1× and 2.6×, respectively. These im-
provements are attributed to the sparsity and compressibility of
the raw pulses, even after software calibration techniques. While
all three compression methods are effective across the benchmarks,
their performance varies due to different gates during the execution.
For instance, QEC achieves a higher compression ratio compared
to QRW, likely because QEC circuits exhibit greater pulse repet-
itiveness despite a larger coding space. However, the temporal
distribution of the pulse tends to be more disordered and hard for
run-length encoding. Under a storage constraint of 1.4MB, Huffman
demonstrates an advantage over run-length encoding. The com-
bined Huffman and run-length approach further optimizes data
transmission bandwidth by first applying Huffman encoding to
the pulses, followed by run-length compression. This sequential
strategy enables superior bandwidth performance.

Table 2 also shows the number of available DACs on a single
FPGA after the bandwidth optimization. For the three benchmarks,
the increase in the number of available DACs varies due to the
differences in circuit compression ratios. Using the combined Huff-
man and run-length encoding approach, the number of available
DACs can be increased by factors of 6.3, 4, and 5 for QEC, QRW,
and RCNOT, respectively. Considering the general-purpose usage,
it is optimal to minimize the number of DACs required for commu-
nication with the FPGA. Consequently, compared to the original
quantum feedback implementation, where a single FPGA could
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Figure 16: Evaluation of the window length in the demodula-
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Figure 17: Evaluation of the probability threshold to deter-
mine the pre-execution.

support up to 4 DACs, the pulse decoder method increases this
capacity to 16 DACs.

The decoder itself introduces a decoding latency, adding to the
feedback latency. However, the primary purpose of the decoder is
to increase the number of DACs that can be supported by a sin-
gle FPGA, replacing inter-FPGA transmission latency with shorter
on-chip transmissions. This creates a latency trade-off. Table 2
also shows the average latency of different decoding algorithms
on three benchmarks when feedback signals must be transmitted
across FPGA boards. The combined Huffman and run-length ap-
proach achieves an average 1.66× reduction in overall latency. For
algorithms like QEC and RCNOT, which involve inter-FPGA feed-
back communication, the acceleration provided by the decoder is
more significant. Notably, for the RCNOT algorithm, which requires
coordination among multiple FPGAs, the decoder method achieves
a 2.3× acceleration compared to the original implementation. For
longer transmission distances, the anticipated reduction in trans-
mission latency would be even greater. In such cases, the decoder
enhances bandwidth and adds decoding overhead to the feedback
latency. Although there is a trade-off, decoders stay beneficial in
superconducting quantum control systems composed of multiple
FPGAs.

6.6 Evaluation of Parameter Setting
Figure 16 presents the prediction accuracy and feedback latency
when setting different window lengths for segmented demodulation
among 6 benchmarks. Both high prediction and lowest average
feedback latency are achieved with the window length set to 0.03
𝜇s. Our findings indicate that shorter window lengths fail to capture
sufficient information, resulting in reduced accuracy. For example,
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DQT [55] algorithm shows the longest latency when the window
length is set to 0.1 𝜇s. Conversely, longer window lengths decrease
the frequency of prediction updates, leading to increased latency,
especially for QEC [42] circuits. For instance, when the window
length is set to 0.1 𝜇s, the feedback latency increases to 2.1×.

Adjusting the tolerance threshold for each benchmark is rec-
ommended. Figure 17 shows an example of how to determine the
experimental best threshold for RCNOT’s branch prediction. We
use the training pulse data to evaluate the feedback latency among
different tolerance thresholds, obtaining the lowest overall feedback
latency. Then, we set 91% to the tolerance threshold to evaluate the
test pulse data.

7 Related Work
Current feedback optimization methods mainly focus on the accel-
eration of feedback calculations on FPGA. To reduce the feedback
latency, Salathe et al. [48] use parallel calculations and pipelined
processing to accelerate state classification. QubiC [20] implements
a pulse table to speed up the pulse preparation and also uses fine-
grained DAC optimization to minimize the feedback latency. Guo
et al. [16] use parallel computing when demodulating readout IQ
pulses. Yang et al. [71] optimizes the state classification by directly
removing zero-value points during the mixing step, bypassing the
time required for a moving average filter. Reuer et al. [44] generate
a deep reinforcement agent for quantum feedback, reaching faster
and more accurate readout for quantum feedback. Additionally,
Tholén et al. [61] implement an event sequencer to pipeline sig-
nal generation, data acquisition, and feedback with precise timing.
However, these methods typically yield only modest latency im-
provements and remain insufficient to overcome the performance
bottleneck caused by the latency wall.

Prior works also focus on readout latency reduction. Walter
et al. [67] minimizes readout latency to 88 ns by increasing the
dispersive-interaction strength, choosing an optimal linewidth of
the readout resonator. Heinsoo et al. [18] employ individual Purcell
filters for each readout resonator to suppress off-resonant driving,
minimizing readout latency to 80 ns. However, these methods face
a shorter lifetime for qubits, making the quantum processor less
practical.

HERQULES [31] and Benjamin et al. [26] employ readout trajec-
tory analysis with FNN and DNN, respectively. However, in Section
4, We apply a new vectorization method that converts readout tra-
jectories into states for feedback branch prediction. Combined with
optimized readout analysis methods [60, 72] and pulse generation
speedup [29, 62], ARTERY achieves higher accuracy and lower feed-
back latency. In pulse compression, Jongseok et al. and Dongmoon
et al. [34, 39] only compress the pulse between the classical com-
puter and FPGA, while our technique optimizes the communication
between the components of FPGAs, which aims to increase the
number of available DACs on each FPGA. ARTERY focuses on feed-
back on physical qubits rather than algorithms executed on logical
qubits [3, 27, 56, 58] or non-feedback benchmarks [25, 63]. However,
ARTERY benefits error correction itself by accelerating fast reset on
syndrome and enabling data qubit pre-execution, providing benefits
for more widely-used applications.

8 Conclusion
Readout and feedback latency are the primary sources of latency
overhead in mid-circuit measurement processes required by quan-
tum error correction and similar algorithms. Previous efforts, such
as leveraging parallel computation or pre-stored pulses, have achieved
only marginal latency reductions. However, due to the persistence
of the latency wall, minimizing feedback time remains a signifi-
cant challenge. To address the problem, we propose ARTERY to
accelerate quantum program feedback via branch prediction. We
introduce how to predict the readout result with historical readout
results and IQ pulse trajectories. Finally, we propose a hardware
design to provide end-to-end acceleration for quantum feedback.

Appendix: Proof of Gate Pre-execution
Consider a quantum system of two qubits (𝑞1, 𝑞2). At 𝑡0, the qubits
are prepared to an initial state |𝜓 (0)⟩. Originally, at specific times:
• During the period of 𝑡1 to 𝑡2, 𝑞1 is under readout; The readout
process can also be regarded as applying an entangling gate with
the resonator, represented as 𝐺𝑞1,𝑟 operated on 𝑡1.

• the branch circuit (represented as gate 𝐴𝑞2 ), is executed on 𝑞2
after 𝑡2, based on the readout results of 𝑞1.

let 𝐴𝑞2 is the branch circuit, which is applied based on the results
of measurements𝑚1 on 𝑞1. This feedback operation can be repre-
sented by

(𝐴𝑞2 )𝑚1 =

{
𝐴𝑞2 , if𝑚1 = 1
𝐼 , if𝑚1 = 0

(1)

where 𝐼 is the identity operation.
We want to prove that the pre-execution operation is equivalent

to the feedback operation. That is to say,

(𝐴𝑞2 )𝑚1⊕𝑚︸        ︷︷        ︸
𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘 𝑜𝑛 𝑚

𝐺𝑞1,𝑟 (𝑡1, 𝑡2) (𝐴𝑞2 )𝑚 = (𝐴𝑞2 )𝑚1𝐺𝑞1,𝑟 (𝑡1, 𝑡2) (2)

Where 𝑚 is the predicted results of readout on 𝑞1, and ⊕ repre-
sents the right multiplication by a measurement operator. Since
𝐺𝑞1,𝑟 (𝑡1, 𝑡2) and 𝐴𝑞2 are applied on different qubits, they commute
with each other. We have

𝐺𝑞1,𝑟 (𝑡1, 𝑡2) (𝐴𝑞2 )𝑚 = (𝐴𝑞2 )𝑚𝐺𝑞1,𝑟 (𝑡1, 𝑡2) (3)

Then, the pre-execution operation( the left of Equation (2)) becomes

(𝐴𝑞2 )𝑚1⊕𝑚𝐺𝑞1,𝑟 (𝑡1, 𝑡2) (𝐴𝑞2 )𝑚 (4)

= (𝐴𝑞2 )𝑚1⊕𝑚 (𝐴𝑞2 )𝑚𝐺𝑞1,𝑟 (𝑡1, 𝑡2) (5)

= (𝐴𝑞2 )𝑚1⊕𝑚⊕𝑚𝐺𝑞1,𝑟 (𝑡1, 𝑡2) (6)

Because𝑚1 ⊕𝑚 ⊕𝑚 =𝑚1 ⊕ (𝑚 ⊕𝑚) =𝑚1 ⊕ 0 =𝑚1, we have

(𝐴𝑞2 )𝑚1⊕𝑚𝐺𝑞1,𝑟 (𝑡1, 𝑡2) (𝐴𝑞2 )𝑚 = (𝐴𝑞2 )𝑚1𝐺𝑞1,𝑟 (𝑡1, 𝑡2) (7)

Thus, we have proved Equation (2).
This analysis shows that when two quantum gates are applied at

different times and operated on the same qubit, they are regarded
to be equivalent.

Acknowledgments
This work was supported by the National Natural Science Founda-
tion of China (No.62472374) and the Zhejiang Provincial Natural
Science Foundation of China under Grant (No.LR25F020002).



ARTERY: Fast Quantum Feedback using Branch Prediction ISCA ’25, June 21–25, 2025, Tokyo, Japan

References
[1] Narges Alavisamani, Suhas Vittal, Ramin Ayanzadeh, Poulami Das, and Moin-

uddin Qureshi. 2024. Promatch: Extending the Reach of Real-Time Quantum
Error Correction with Adaptive Predecoding. In Proceedings of the 29th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 3. 818–833.

[2] Christian Kraglund Andersen, Ants Remm, Stefania Lazar, Sebastian Krinner,
Johannes Heinsoo, Jean-Claude Besse, Mihai Gabureac, Andreas Wallraff, and
Christopher Eichler. 2019. Entanglement stabilization using ancilla-based parity
detection and real-time feedback in superconducting circuits. npj Quantum
Information 5, 1 (2019), 69.

[3] Ryan Babbush, Craig Gidney, Dominic W Berry, Nathan Wiebe, Jarrod McClean,
Alexandru Paler, Austin Fowler, and Hartmut Neven. 2018. Encoding electronic
spectra in quantum circuits with linear T complexity. Physical Review X 8, 4
(2018), 041015.

[4] Elisa Bäumer, Vinay Tripathi, Derek S Wang, Patrick Rall, Edward H Chen,
Swarnadeep Majumder, Alireza Seif, and Zlatko K Minev. 2024. Efficient long-
range entanglement using dynamic circuits. PRX Quantum 5, 3 (2024), 030339.

[5] Colin D Bruzewicz, John Chiaverini, Robert McConnell, and Jeremy M Sage.
2019. Trapped-ion quantum computing: Progress and challenges. Applied Physics
Reviews 6, 2 (2019).

[6] Po-Yung Chang, Marius Evers, and Yale N Patt. 1997. Improving branch prediction
accuracy by reducing pattern history table interference. International journal of
parallel programming 25 (1997), 339–362.

[7] Yanhao Chen, Yuwei Jin, Fei Hua, Ari Hayes, Ang Li, Yunong Shi, and Eddy Z
Zhang. 2023. A pulse generation framework with augmented program-aware
basis gates and criticality analysis. In 2023 IEEE International Symposium on
High-Performance Computer Architecture (HPCA). IEEE, 773–786.

[8] Jinglei Cheng, Haoqing Deng, and Xuehai Qia. 2020. Accqoc: Accelerating
quantum optimal control based pulse generation. In 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA). IEEE, 543–555.

[9] ID Conway Lamb, JI Colless, JM Hornibrook, SJ Pauka, SJ Waddy, MK Frechtling,
and DJ Reilly. 2016. An FPGA-based instrumentation platform for use at deep
cryogenic temperatures. Review of Scientific Instruments 87, 1 (2016).

[10] Julia Cramer, Norbert Kalb, M Adriaan Rol, Bas Hensen, Machiel S Blok, Matthew
Markham, Daniel J Twitchen, Ronald Hanson, and Tim H Taminiau. 2016. Re-
peated quantum error correction on a continuously encoded qubit by real-time
feedback. Nature communications 7, 1 (2016), 11526.

[11] Poulami Das, Aditya Locharla, and Cody Jones. 2022. Lilliput: a lightweight
low-latency lookup-table decoder for near-term quantum error correction. In
Proceedings of the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems. 541–553.

[12] Poulami Das, Christopher A Pattison, Srilatha Manne, Douglas M Carmean,
Krysta M Svore, Moinuddin Qureshi, and Nicolas Delfosse. 2022. Afs: Accu-
rate, fast, and scalable error-decoding for fault-tolerant quantum computers. In
2022 IEEE International Symposium on High-Performance Computer Architecture
(HPCA). IEEE, 259–273.

[13] Poulami Das, Swamit Tannu, Siddharth Dangwal, and Moinuddin Qureshi. 2021.
ADAPT: Mitigating Idling Errors in Qubits via Adaptive Dynamical Decoupling.
In MICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchitec-
ture (Virtual Event, Greece) (MICRO ’21). Association for Computing Machinery,
New York, NY, USA, 950–962.

[14] Richard Gebauer, Nick Karcher, Daria Gusenkova, Martin Spiecker, Lukas Grün-
haupt, Ivan Takmakov, Patrick Winkel, Luca Planat, Nicolas Roch, Wolfgang
Wernsdorfer, Alexey Ustinov, Marc Weber, Martin Weides, Ioan Pop, and Oliver
Sander. 2020. State preparation of a fluxonium qubit with feedback from a custom
FPGA-based platform. In AIP Conference Proceedings, Vol. 2241. AIP Publishing.

[15] András M Gunyhó, Suman Kundu, Jian Ma, Wei Liu, Sakari Niemelä, Giacomo
Catto, Vasilii Vadimov, Visa Vesterinen, Priyank Singh, Qiming Chen, and Mikko
Möttönen. 2024. Single-shot readout of a superconducting qubit using a thermal
detector. Nature Electronics (2024), 1–11.

[16] Cheng Guo, Jin Lin, Lian-Chen Han, Na Li, Li-Hua Sun, Fu-Tian Liang, Dong-
Dong Li, Yu-Huai Li, Ming Gong, Yu Xu, Sheng-Kai Liao, and Cheng-Zhi Peng.
2022. Low-latency readout electronics for dynamic superconducting quantum
computing. AIP Advances 12, 4 (2022).

[17] Riddhi S Gupta, Neereja Sundaresan, Thomas Alexander, Christopher J Wood,
Seth T Merkel, Michael B Healy, Marius Hillenbrand, Tomas Jochym-O’Connor,
James R Wootton, Theodore J Yoder, W Andrew Cross, Maika Takita, and J Ben-
jamin Brown. 2024. Encoding a magic state with beyond break-even fidelity.
Nature 625, 7994 (2024), 259–263.

[18] Johannes Heinsoo, Christian Kraglund Andersen, Ants Remm, Sebastian Krinner,
Theodore Walter, Yves Salathé, Simone Gasparinetti, Jean-Claude Besse, Anton
Potočnik, Christopher Eichler, and Andreas Wallraff. 2018. Rapid high-fidelity
multiplexed readout of superconducting qubits. Physical Review Applied 10, 3
(2018), 034040.

[19] Fei Hua, Yanhao Chen, Yuwei Jin, Chi Zhang, Ari Hayes, Youtao Zhang, and
Eddy Z Zhang. 2021. Autobraid: A framework for enabling efficient surface code

communication in quantum computing. In MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture. 925–936.

[20] Gang Huang, Yilun Xu, Neelay Fruitwala, Abhi D Rajagopala, Kasra Nowrouzi,
Ravi K Naik, David Santiago, and Irfan Siddiqi. 2023. QubiC 2.0: A Flexible
Advanced Full Stack Quantum Bit Control System. In 2023 IEEE International
Conference on Quantum Computing and Engineering (QCE), Vol. 2. IEEE, 248–249.

[21] He-Liang Huang, Dachao Wu, Daojin Fan, and Xiaobo Zhu. 2020. Superconduct-
ing quantum computing: a review. Science China Information Sciences 63 (2020),
1–32.

[22] Evan Jeffrey, Daniel Sank, JY Mutus, TC White, J Kelly, R Barends, Y Chen, Z
Chen, B Chiaro, A Dunsworth, A Megrant, P O’Malley, C. Neill, P Roushan,
A Vainsencher, J Wenner, A Cleland, and J Martinis. 2014. Fast accurate state
measurement with superconducting qubits. Physical review letters 112, 19 (2014),
190504.

[23] Hansol Kim, Wonjae Choi, Younghun Kim, and Younghun Kwon. 2024. Imple-
mentation of Magic State Injection within Heavy-Hexagon Architecture. arXiv
preprint arXiv:2412.15751 (2024).

[24] Jens Koch, Terri M Yu, Jay Gambetta, Andrew A Houck, David I Schuster, Jo-
hannes Majer, Alexandre Blais, Michel H Devoret, Steven M Girvin, and Robert J
Schoelkopf. 2007. Charge-insensitive qubit design derived from the Cooper
pair box. Physical Review A—Atomic, Molecular, and Optical Physics 76, 4 (2007),
042319.

[25] Ang Li, Samuel Stein, Sriram Krishnamoorthy, and James Ang. 2023. Qasmbench:
A low-level quantum benchmark suite for nisq evaluation and simulation. ACM
Transactions on Quantum Computing 4, 2 (2023), 1–26.

[26] Benjamin Lienhard, Antti Vepsäläinen, Luke C.G. Govia, Cole R. Hoffer, Jack Y.
Qiu, Diego Ristè, Matthew Ware, David Kim, Roni Winik, Alexander Melville,
Bethany Niedzielski, Jonilyn Yoder, Guilhem J. Ribeill, Thomas A. Ohki, Hari K.
Krovi, Terry P. Orlando, Simon Gustavsson, and William D. Oliver. 2022. Deep-
neural-network discrimination of multiplexed superconducting-qubit states.
Physical Review Applied 17, 1 (2022), 014024.

[27] Daniel Litinski. 2019. A game of surface codes: Large-scale quantum computing
with lattice surgery. Quantum 3 (2019), 128.

[28] William P Livingston, Machiel S Blok, Emmanuel Flurin, Justin Dressel, AndrewN
Jordan, and Irfan Siddiqi. 2022. Experimental demonstration of continuous
quantum error correction. Nature communications 13, 1 (2022), 2307.

[29] Liqiang Lu, Wuwei Tian, Xinghui Jia, Zixuan Song, Siwei Tan, and Jianwei Yin.
2024. SmartQCache: Fast and Precise Pulse Control With Near-Quantum Cache
Design on FPGA. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (2024).

[30] Andrii Maksymov, Jason Nguyen, Vandiver Chaplin, Yunseong Nam, and Igor L
Markov. 2022. Detecting Qubit-coupling faults in ion-trap quantum computers.
In 2022 IEEE International Symposium on High-Performance Computer Architecture
(HPCA). IEEE, 387–399.

[31] Satvik Maurya, Chaithanya Naik Mude, William D Oliver, Benjamin Lienhard,
and Swamit Tannu. 2023. Scaling qubit readout with hardware efficient machine
learning architectures. In Proceedings of the 50th Annual International Symposium
on Computer Architecture. 1–13.

[32] Satvik Maurya and Swamit Tannu. 2022. Compaqt: Compressed waveform mem-
ory architecture for scalable qubit control. In 2022 55th IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 1059–1077.

[33] David C McKay, Christopher J Wood, Sarah Sheldon, Jerry M Chow, and Jay M
Gambetta. 2017. Efficient Z gates for quantum computing. Physical Review A 96,
2 (2017), 022330.

[34] Dongmoon Min, Junpyo Kim, Junhyuk Choi, Ilkwon Byun, Masamitsu Tanaka,
Koji Inoue, and Jangwoo Kim. 2023. Qisim: Architecting 10+ k qubit qc interfaces
toward quantum supremacy. In Proceedings of the 50th Annual International
Symposium on Computer Architecture. 1–16.

[35] Sparsh Mittal. 2019. A survey of techniques for dynamic branch prediction.
Concurrency and Computation: Practice and Experience 31, 1 (2019), e4666.

[36] MS Moreira, Gian Giacomo Guerreschi, Wouter Vlothuizen, Jorge F Marques,
Jeroen van Straten, Shavindra P Premaratne, Xiang Zou, Hany Ali, Nandini
Muthusubramanian, Christos Zachariadis, J. van Someren,M. Beekman, N. Haider,
A. Bruno, C. G. Almudever, A. Y. Matsuura, and L. DiCarlo. 2023. Realization of a
quantum neural network using repeat-until-success circuits in a superconducting
quantum processor. npj Quantum Information 9, 1 (2023), 118.

[37] Emily Mount, Daniel Gaultney, Geert Vrijsen, Michael Adams, So-Young Baek,
Kai Hudek, Louis Isabella, Stephen Crain, Andre van Rynbach, Peter Maunz,
and Jungsang Kim. 2016. Scalable digital hardware for a trapped ion quantum
computer. Quantum Information Processing 15 (2016), 5281–5298.

[38] Thomas E O’Brien, B Tarasinski, and Leo DiCarlo. 2017. Density-matrix simula-
tion of small surface codes under current and projected experimental noise. npj
Quantum Information 3, 1 (2017), 39.

[39] Jongseok Park, Sushil Subramanian, Lester Lampert, Todor Mladenov, Ilya
Klotchkov, Dileep J. Kurian, Esdras Juarez-Hernandez, Brando Perez Esparza,
Sirisha Rani Kale, Asma Beevi K. T., Shavindra P. Premaratne, Thomas F. Watson,
Satoshi Suzuki, Mustafijur Rahman, Jaykant B. Timbadiya, Saksham Soni, and



ISCA ’25, June 21–25, 2025, Tokyo, Japan Wuwei Tian, Liqiang Lu, Siwei Tan, Yun Liang, Tingting Li, Kaiwen Zhou, Xinghui Jia, and Jianwei Yin

Stefano Pellerano. 2021. A fully integrated cryo-CMOS SoC for state manip-
ulation, readout, and high-speed gate pulsing of spin qubits. IEEE Journal of
Solid-State Circuits 56, 11 (2021), 3289–3306.

[40] Lukas Postler, Sascha Heu𝛽en, Ivan Pogorelov, Manuel Rispler, Thomas Feldker,
Michael Meth, Christian D Marciniak, Roman Stricker, Martin Ringbauer, Rainer
Blatt, Philipp Schindler, Markus Müller, and Thomas Monz. 2022. Demonstration
of fault-tolerant universal quantum gate operations. Nature 605, 7911 (2022),
675–680.

[41] IBM Fez Processor. 2024. IBM Quantum Platform. https://quantum.ibm.com/
services/resources?system=ibm_fez

[42] Google quantum AI. 2023. Suppressing quantum errors by scaling a surface code
logical qubit. Nature 614, 7949 (2023), 676–681.

[43] Gokul Subramanian Ravi, Jonathan M Baker, Arash Fayyazi, Sophia Fuhui Lin,
Ali Javadi-Abhari, Massoud Pedram, and Frederic T Chong. 2023. Better than
worst-case decoding for quantum error correction. In Proceedings of the 28th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2. 88–102.

[44] Kevin Reuer, Jonas Landgraf, Thomas Fösel, James O’Sullivan, Liberto Beltrán,
Abdulkadir Akin, Graham J Norris, Ants Remm, Michael Kerschbaum, Jean-
Claude Besse, Florian Marquardt, Andreas Wallraff, and Christopher Eichler.
2023. Realizing a deep reinforcement learning agent for real-time quantum
feedback. Nature Communications 14, 1 (2023), 7138.

[45] Leon Riesebos, Xiang Fu, Savvas Varsamopoulos, Carmen GAlmudever, and Koen
Bertels. 2017. Pauli frames for quantum computer architectures. In Proceedings
of the 54th Annual Design Automation Conference 2017. 1–6.

[46] Diego Ristè, Josephine G van Leeuwen, H-S Ku, KonradW Lehnert, and Leonardo
DiCarlo. 2012. Initialization by measurement of a superconducting quantum bit
circuit. Physical review letters 109, 5 (2012), 050507.

[47] Ciaran Ryan-Anderson, Justin G Bohnet, Kenny Lee, Daniel Gresh, Aaron Hankin,
JP Gaebler, David Francois, Alexander Chernoguzov, Dominic Lucchetti, Natalie C
Brown, TM. Gatterman, SK. Halit, K. Gilmore, JA. Gerber, B. Neyenhuis, D.
Hayes, and RP. Stutz. 2021. Realization of real-time fault-tolerant quantum error
correction. Physical Review X 11, 4 (2021), 041058.

[48] Yves Salathé, Philipp Kurpiers, Thomas Karg, Christian Lang, Christian Kraglund
Andersen, Abdulkadir Akin, Sebastian Krinner, Christopher Eichler, and Andreas
Wallraff. 2018. Low-latency digital signal processing for feedback and feedforward
in quantum computing and communication. Physical Review Applied 9, 3 (2018),
034011.

[49] André Seznec. 2007. A 256 kbits l-tage branch predictor. Journal of Instruction-
Level Parallelism (JILP) Special Issue: The Second Championship Branch Prediction
Competition (CBP-2) 9 (2007), 1–6.

[50] Si Shen, Chenzhi Yuan, Zichang Zhang, Hao Yu, Ruiming Zhang, Chuanrong
Yang, Hao Li, Zhen Wang, You Wang, Guangwei Deng, Haizhi Song, Lixing
You, Yunru Fan, Guangcan Guo, and Qiang Zhou. 2023. Hertz-rate metropolitan
quantum teleportation. Light: Science & Applications 12, 1 (2023), 115.

[51] Neil Shenvi, Julia Kempe, and K Birgitta Whaley. 2003. Quantum random-walk
search algorithm. Physical Review A 67, 5 (2003), 052307.

[52] VV Sivak, Alec Eickbusch, Baptiste Royer, Shraddha Singh, Ioannis Tsioutsios,
Suhas Ganjam, Alessandro Miano, BL Brock, AZ Ding, Luigi Frunzio, SM Girvin,
RJ Schoelkopf, and MH. Devoret. 2023. Real-time quantum error correction
beyond break-even. Nature 616, 7955 (2023), 50–55.

[53] James E Smith. 1998. A study of branch prediction strategies. In 25 years of the
international symposia on Computer architecture (selected papers). 202–215.

[54] James E Smith. 1998. A study of branch prediction strategies. In 25 years of the
international symposia on Computer architecture (selected papers). 202–215.

[55] Lars Steffen, Yves Salathe, Markus Oppliger, Philipp Kurpiers, Matthias Baur,
Christian Lang, Christopher Eichler, Gabriel Puebla-Hellmann, Arkady Fedorov,
and Andreas Wallraff. 2013. Deterministic quantum teleportation with feed-
forward in a solid state system. Nature 500, 7462 (2013), 319–322.

[56] Samuel Stein, Sara Sussman, Teague Tomesh, Charles Guinn, Esin Tureci,
Sophia Fuhui Lin, Wei Tang, James Ang, Srivatsan Chakram, Ang Li, Margaret
Martonosi, Fred T. Chong, Andrew A. Houck, Isaac L. Chuang, and Michael
Austin DeMarco. 2023. Hetarch: Heterogeneous microarchitectures for super-
conducting quantum systems. In Proceedings of the 56th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture. 539–554.

[57] Yasunari Suzuki, Takanori Sugiyama, Tomochika Arai, Wang Liao, Koji Inoue, and
Teruo Tanimoto. 2022. Q3DE: A fault-tolerant quantum computer architecture
for multi-bit burst errors by cosmic rays. In 2022 55th IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 1110–1125.

[58] Mario Szegedy. 2004. Quantum speed-up of Markov chain based algorithms. In
45th Annual IEEE symposium on foundations of computer science. IEEE, 32–41.

[59] Daniel Bochen Tan, Murphy Yuezhen Niu, and Craig Gidney. 2024. A SAT Scalpel
for Lattice Surgery: Representation and Synthesis of Subroutines for Surface-Code
Fault-Tolerant Quantum Computing. arXiv preprint arXiv:2404.18369 (2024).

[60] Siwei Tan, Liqiang Lu, Hanyu Zhang, Jia Yu, Congliang Lang, Yongheng Shang,
Xinkui Zhao, Mingshuai Chen, Yun Liang, and Jianwei Yin. 2024. QuFEM: Fast
and Accurate Quantum Readout Calibration Using the Finite Element Method.
In Proceedings of the 29th ACM International Conference on Architectural Support

for Programming Languages and Operating Systems, Volume 2. 948–963.
[61] Mats O Tholén, Riccardo Borgani, Giuseppe Ruggero Di Carlo, Andreas Bengts-

son, Christian Križan, Marina Kudra, Giovanna Tancredi, Jonas Bylander, Per
Delsing, Simone Gasparinetti, and David Haviland. 2022. Measurement and
control of a superconducting quantum processor with a fully integrated radio-
frequency system on a chip. Review of Scientific Instruments 93, 10 (2022).

[62] Wuwei Tian, Xinghui Jia, Siwei Tan, Zixuan Song, Liqiang Lu, and Jianwei Yin.
2023. QPulseLib: Accelerating the Pulse Generation of Quantum Circuit with
Reusable Patterns. In 2023 IEEE/ACM International Conference on Computer Aided
Design (ICCAD). IEEE, 01–09.

[63] Teague Tomesh, Pranav Gokhale, Victory Omole, Gokul Subramanian Ravi,
Kaitlin N Smith, Joshua Viszlai, Xin-Chuan Wu, Nikos Hardavellas, Margaret R
Martonosi, and Frederic T Chong. 2022. Supermarq: A scalable quantum bench-
mark suite. In 2022 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). IEEE, 587–603.

[64] Yosuke Ueno, Masaaki Kondo, Masamitsu Tanaka, Yasunari Suzuki, and Yutaka
Tabuchi. 2022. Qulatis: A quantum error correction methodology toward lattice
surgery. In 2022 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). IEEE, 274–287.

[65] Antti Vepsäläinen, Roni Winik, Amir H Karamlou, Jochen Braumüller, Agustin Di
Paolo, Youngkyu Sung, Bharath Kannan, Morten Kjaergaard, David K Kim,
Alexander J Melville, BM. Niedzielski, Jonilyn. Yoder, Simon Gustavsson, and
William Oliver. 2022. Improving qubit coherence using closed-loop feedback.
Nature Communications 13, 1 (2022), 1932.

[66] Suhas Vittal, Poulami Das, and Moinuddin Qureshi. 2023. Astrea: Accurate
quantum error-decoding via practical minimum-weight perfect-matching. In
Proceedings of the 50th Annual International Symposium on Computer Architecture.
1–16.

[67] Theodore Walter, Philipp Kurpiers, Simone Gasparinetti, Paul Magnard, Anton
Potočnik, Yves Salathé, Marek Pechal, Mintu Mondal, Markus Oppliger, Christo-
pher Eichler, and A Wallraff. 2017. Rapid high-fidelity single-shot dispersive
readout of superconducting qubits. Physical Review Applied 7, 5 (2017), 054020.

[68] ZhanWang, Hai Yu, Rongli Liu, XiaoMa, Xueyi Guo, Zhongcheng Xiang, Pengtao
Song, Luhong Su, Yirong Jin, and Dongning Zheng. 2021. Hardware for multi-
superconducting qubit control and readout. Chinese Physics B 30, 11 (2021),
110305.

[69] Karen Wintersperger, Florian Dommert, Thomas Ehmer, Andrey Hoursanov,
Johannes Klepsch, Wolfgang Mauerer, Georg Reuber, Thomas Strohm, Ming
Yin, and Sebastian Luber. 2023. Neutral atom quantum computing hardware:
performance and end-user perspective. EPJ Quantum Technology 10, 1 (2023),
32.

[70] Liang Xiang, Zhiwen Zong, Zhenhai Sun, Ze Zhan, Ying Fei, Zhangjingzi Dong,
Chongxin Run, Zhilong Jia, Peng Duan, Jianlan Wu, Yi Yin, and Guoping Guo.
2020. Simultaneous feedback and feedforward control and its application to
realize a random walk on the bloch sphere in an xmon-superconducting-qubit
system. Physical Review Applied 14, 1 (2020), 014099.

[71] Yuchen Yang, Zhongtao Shen, Xing Zhu, Ziqi Wang, Gengyan Zhang, Jingwei
Zhou, Xun Jiang, Chunqing Deng, and Shubin Liu. 2022. FPGA-based electronic
system for the control and readout of superconducting quantum processors.
Review of Scientific Instruments 93, 7 (2022).

[72] Hanyu Zhang, Liqiang Lu, Siwei Tan, Size Zheng, Jia Yu, and Jianwei Yin. 2024.
SpREM: Exploiting Hamming Sparsity for Fast Quantum Readout Error Mitiga-
tion. In Proceedings of the 61st ACM/IEEE Design Automation Conference. 1–6.

[73] Mengyu Zhang, Lei Xie, Zhenxing Zhang, Qiaonian Yu, Guanglei Xi, Hualiang
Zhang, Fuming Liu, Yarui Zheng, Yicong Zheng, and Shengyu Zhang. 2021.
Exploiting different levels of parallelism in the quantum control microarchitecture
for superconducting qubits. In MICRO-54: 54th Annual IEEE/ACM International
Symposium on Microarchitecture. 898–911.

[74] Yu Zhou, Zhenxing Zhang, Zelong Yin, Sainan Huai, Xiu Gu, Xiong Xu, Jonathan
Allcock, Fuming Liu, Guanglei Xi, Qiaonian Yu, Hualiang Zhang, Mengyu Zhang,
Hekang Li, Xiaohui Song, Zhan Wang, Dongning Zheng, Shuoming An, Yarui
Zheng, and Shengyu Zhang. 2021. Rapid and unconditional parametric reset
protocol for tunable superconducting qubits. Nature Communications 12, 1 (2021),
5924.

https://quantum.ibm.com/services/resources?system=ibm_fez
https://quantum.ibm.com/services/resources?system=ibm_fez

	Abstract
	1 Introduction
	2 Background
	2.1 Quantum Feedback Architecture
	2.2 Breakdown of Quantum Feedback

	3 Overview
	4 Branch Prediction Methodology
	5 ARTERY Implementation
	5.1 Hardware Design
	5.2 Scalable Controller Interconnection
	5.3 Dynamic Timing
	5.4 Adaptive Pulse Sampling

	6 Evaluation
	6.1 Experiment Setup
	6.2 Example: quantum error correction
	6.3 Evaluation of Feedback Latency
	6.4 Evaluation of ARTERY Prediction
	6.5 Evaluation of Controller Implementation
	6.6 Evaluation of Parameter Setting

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

